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Abstract—Feature selection transcends mere
dimensionality reduction, serving as a strategic
instrument that enhances model interpretability,
generalization, optimizes computational
efficiency, improves model accuracy, mitigates
overfitting, by isolating the most predictive
features, thereby facilitating the development of
robust and generalizable machine learning
models. The researchers introduced several
feature selection techniques to select significant
and pertinent features. They used a variety of
techniques, including filter, wrapper and
embedding methods. However, they are unable to
choose the optimal features, and a number of
them (such as the wrapper technique) rely on the
classification algorithm. These methods, which
also use correlation, distance measures, are
unable to represent the intricate and non-linear
interactions of the features. Therefore,
considering the ability to capture both linear and
non-linear interactions, recent years have seen a
rise in the use of techniques based on mutual
information (MI). Graph-based techniques using
MI are becoming more and more popular due to
their enhanced classification accuracy, resilience,
and generalizability in fields such as
bioinformatics, text mining, image classification,
and network systems. In this study, we presented
Feature Selection using Graph based Clustering
(FSGC), a graph-based clustering technique that
groups feature(s) with similar characteristics by
combining the MI and clustering technique. In
FSGC, the cluster(s) are formed in such a way that
provide redundant and complementary
information. The experimental results on twenty
benchmark datasets from different domains
demonstrate that FSGC performs better than other
compared state-of-the-art approaches in the
majority of cases. Furthermore, it is used to
examine the effects of separating attack class
traffic from regular network traffic on network
intrusion detection (IDS) datasets.

Keywords—Feature Selection, Mutual
Information, Clustering, Graph, Minimum
Spanning Tree, Network Intrusion Detection
System.

I. INTRODUCTION

The process of feature selection is essential to
build successful classification models, especially when

working with high-dimensional datasets where
irrelevant and redundant features can have a
detrimental influence on computing efficiency and
accuracy. Feature selection is an essential procedure
that enhances model accuracy, generalization, and
computing efficiency by choosing a subset of pertinent
characteristics and removing unnecessary or noisy
ones[1]. Finding a subset of features that are most
informative for the target variable is the main goal in
order to enhance the model interpretability and lower
the possibility of overfitting [2]. Langley [3] divided
various feature selection techniques into two major
categories (filter and wrapper) according to how much
they rely on the inductive process that will ultimately
employ the chosen subset. The inductive algorithm
serves as the evaluation function for wrapper methods,
whereas filter methods operate independently of it. In
addition to this, there are hybrid approaches that
integrate the wrapper and filter mechanisms. Nkiama
et al. [4] proposed a method, where the relevant
feature subset is chosen from the remaining features
using Recursive Feature Elimination after the features
are ranked according to their individual strengths using
the ANOVA F-test univariate filter method. Filter,
wrapper, and embedding approaches are examples of
traditional feature selection techniques that frequently
fail to capture intricate dependencies between
features, particularly in the presence of non-linear or
higher-order interactions [2], [5], [6].

Mutual Information (MI), a non-linear dependence
metric that can capture complex statistical
relationships between variables, has drawn a lot of
interest. It can detect both linear and non-linear
relationships, which makes it particularly useful for
finding pertinent features for classification problems
[7], [8], [9]. However, when calculating the value of Ml
for a finite number of samples, one of the main
disadvantages is that there exists some mistake (bias)
[10], [11]. By employing the bias-corrected Ml
mechanism to further refine relevancy estimations, the
influence of sample size disparities can be reduced
and classification performance can be enhanced [12],
[13], [14]. The bias of MI towards multi-valued features
can be reduced by normalizing it. Estévez et al.[15]
presented a method, Normalized Mutual Information
Feature Selection (NMIFS) where the redundancy of
the features are measured by calculating the average
of normalized MI (NMI).

Conventional Mi-based feature selection
techniques frequently select overlapping features by
using greedy tactics that ignore inter-feature
redundancy [16]. Clustering based methods can play a
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vital role which aims to group similar data points.
Agglomerative hierarchical clustering stands out above
other methods due to its ease of use and capacity to
reveal nested structures through the iterative merging
of the most similar clusters. Because of this, it is
useful in fields including network intrusion detection
systems, image analysis, bioinformatics, and social
networks [17], [18], [19]. However, it is sensitive to
early-stage verdicts and computationally challenging.
Besides, cluster number specification affects the
efficiency of hierarchical clustering algorithms and may
hinder the achievement of the optimal feature set. To
overcome this, researchers have investigated graph-
based clustering techniques, such as spectral
clustering, minimum spanning tree (MST) clustering,
divide data using cut-based or connectivity-based
procedures after modeling it as a graph which are
more scalable and better at handling complex, non-
convex structures [20]. These methods represent data
as a graph in which dependencies, such as Ml,
correlation or Symmetric Uncertainty (SU), are
represented as edges and features as nhodes.
Clustering these graph representations facilitates the
discovery of representative subsets and groups of
shared characteristics [21]. Recent work integrates
feature selection with hierarchical clustering by
interpreting single linkage dendrograms as Minimum
Spanning Tree (MST), enabling simultaneous
optimization of feature subsets and cluster structures
while preserving information [22].

Graph based feature selection has become an
appealing alternative by utilizing graphs' capacity to
express complex interactions between features [23],
[24]. Song et al. [25] presented a graph based
clustering method namely Fast clustering bAsed
feature Selection algoriThm (FAST) using a cut-based
technique that uses Symmetric uncertainty as edge
value to form different clusters with the help of
Minimum Spanning Tree (MST). Jaganath and
Sasikumar [26] introduced a method for grouping
transactional data with similarity scores using MST.
Nevertheless, they employed correlation similarity
metrics, which are unable to detect non-linear
relationships among the features. Magendiran and
Jayaranjani [27] proposed another graph-based
selection technique that makes advantage of MST. To
decide on the final feature subset, Liu et al. [28]
devised a MST-based Feature Clustering (MFC)
approach that uses a variation of information metric as
the edge value to build the MST and then make the
clusters from it. These approaches, however, only
choose one representative feature from each cluster,
ignoring the possibility that involving more informative
feature(s) could improve algorithm performance. All
things considered, the combination of graph
representations, MST clustering, and MiI-based
dependency measures presents a viable method for
sub-optimal feature selection. This serves as the
foundation for the method presented in this research.

In this paper, a Graph based clustering method is
proposed and the contributions of this work are as the
followings:

e  Firstly, we presented Feature Selection using
Graph based Clustering (FSGC), a clustering method
to group the redundant as well as additional
information (complementary) given features in the
same cluster.

e  Secondly, we used JBMI on each cluster to
choose the most relevant feature along with other
features that provide additional information in order to
select the final feature set.

e  Thirdly, in order to analyze the performance of
FSGC rigorous experiments on twenty benchmark
datasets are presented.

e Finally, FSGC is utilized on two well-known
publicly accessible IDS datasets to see how well it
distinguishes between typical and unusual traffic in the
network system.

The remaining part of the paper is organized as
follows: Existing works are discussed in Section II,
whereas our suggested approach is described in
Section Ill. Section IV then presents the experimental
results, and section V provides a summary of the
study.

Il. LITERATURE REVIEW

Feature selection has been thoroughly researched
as a way to enhance classification algorithm
performance by removing redundant and unnecessary
ones. It improves model correctness, generalization,
and computational efficiency by selecting a subset of
relevant attributes and eliminating those that are noisy
and redundant. Methods of feature selection can be
broadly divided into filter, wrapper, and embedding.
Filters, regardless of the selected predictor, choose
subsets of variables as a pre-processing step, makes it
computationally efficient and independent of specific
classifiers. Wrappers rate subsets of variables based
on their prediction power by using the learning
machine of interest as a black box. Embedded
methods are often tailored to certain learning
machines and carry out variable selection during
training [1], [3], [9]- Based on the score each feature
has acquired during the selection process, Nkiama et
al. [4] provided a feature selection mechanism that
seeks to both find the features that would increase the
detection rate and eliminate non-relevant features. A
decision tree-based classifier is coupled to a recursive
feature reduction method in order to accomplish that
goal. The appropriate relevant features were then
found in order to identify the network's abnormal traffic.
Traditional feature selection methods sometimes fall
short in capturing complex feature dependencies,
especially when non-linear or higher-order interactions
are present [2], [5], [6], [29]. The ability of MI-based
filter approaches to capture intricate variable
relationships makes them especially popular. Ml is
capable of capturing both linear and non-linear
relationships between the variables [7], [13]. It
measures statistical dependence, capturing linear and
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nonlinear relationships [30], and remains invariant
under invertible, differentiable transformations like
translations and rotations [30], [31].

One of the foundational works in Ml-based feature
selection by Battiti [32] namely Mutual Information
based Feature Selection (MIFS), who presented an
approach for choosing features having a high MI with
the target class. The Mutual Information Feature
Selection (MIFS) criterion is presented as follows

Jmirs(fi) = 1(fi; ©) — Bijesl(fiifj) 1)

Here the set of features that are now selected is
denoted by S. In order to guarantee feature relevance
(MI between a feature and a class), it incorporates the
I(f;; C) term; however, it also applies an adjustment to
enforce low correlations with features that have
already been chosen in S. This approach makes the
assumption that we are building our final feature
subset iteratively, selecting features one after the
other. The variable parameter g in the MIFS criterion,
which controls the relative relevance of the Ml between
the candidate feature and the previously chosen
feature(s) with regard to the MI with the target class,
must be set experimentally.

Later Yang and Moody [33] used Joint Mutual
Information (JMI)  to concentrate on enhancing
complementary (Ml between two features given the
class label) information between features. In the study
of Brown et al. [34], they demonstrated that prevalent
heuristics for information-based feature selection are
approximately iterative conditional likelihood
maximizers. The JMI criteria for feature is in (2)

I () =15 ©) = 5 Zpyes(1(Fis £5) = 1 £10)) (2)

In this case, f; is the candidate feature that will be
chosen, S is the feature set that has already been
chosen, and these three terms stand for relevancy,
redundancy (Ml between two features) and
complementary respectively. However, there can be
bias involved in calculating the Ml value for a limited
number of instances, which could impair the model's
effectiveness. Addressing this, Sharmin et al. [13]
proposed a work, Joint Bias corrected Mutual
Information (JBMI) that attempts to resolve it. They
also calculated the associated critical value. The JBMI
formula becomes as the following equation

Jsmn(F) = 10f©) = 2+ = 2 s (1 ) —

-1)(J-1) (ZNhS%
I-1)(J-1)K . 7-1)(J-1)
2Nin2 _I(ﬁ’ff)-l_ 2NIn2 ) (3)

Here,J, J represent the feature intervals of f; and f;. The
numbers of classes and total samples are denoted by
K, N respectively. Most of the feature selection
methods discussed uses low-dimensional MI, limiting
high-order dependency capture. The authors of [35]
addresses this gap by analyzing the use of high-order
dependencies in Ml-based feature selection. They
presented a technique called RelaxMRMR (rMRMR)
that establishes a series of assumptions that permit
high-dimensional MI to be broken down into low-
dimensional terms. By easing the assumptions, they

developed a systematic method to incorporate higher-
order feature interactions. For a more accurate
estimation of joint MI, Roy et al. [29] address the bias
issue for the high-order interaction term. They start by
figuring just how biased this term is. Additionally, they
demonstrated that the y? distribution is followed when
selecting features using a y2? based search. They also
offered Discretization and feature Selection based on
bias corrected Mutual information, which is expanded
by including simultaneous forward selection and
backward elimination (DSbM_BE).

As demonstrated in [13], [29] relevancy,
redundancy, complementary terms may be utilized to
choose features using the critical values because they
also follow the y? distribution. When a feature shares
information with others, it may be misinterpreted as
poor by traditional feature redundancy metrics, even if
it offers useful additional categorization information. In
order to solve this, Gao et al. [36] suggested a
redundancy term that assesses each feature's
relevance to the target class and presented a method
namely Min-Redundancy and Max-Dependency
(MRMD). Naghibi et al. [37] employed a feature subset
selection method called convex based relaxation
approximation (COBRA), which uses semi-definite
programming to search across the subset space.

Clustering based methods are introduced to
address the limitations of the conventional Ml based
feature selection techniques. These methods attempt
to group those features with similar characteristics.
Agglomerative clustering and its variants have been
the subject of a significant amount of research. A
thorough analysis of the clustering methods was given
by Xu and Wunsch [17], who also highlighted the value
of hierarchical models in identifying multi-level data
patterns. A quicker implementation of agglomerative
clustering was introduced by Millner [38], which
decreased the runtime in real-world applications.
However, early-stage merging faults cannot be fixed
due to the irreversible nature of the technique, and the
outcomes differ greatly depending on the linking
mechanism used. It restricts the flexibility of
agglomerative clustering in noisy and high-dimensional
circumstances. Additionally, the cluster number
specification may make it more difficult to obtain the
optimal feature set and has an impact on the
effectiveness of hierarchical clustering techniques. In
order to overcome these constraints, the researchers
have looked into graph-based clustering methods like
MSTs.

Graph-based clustering techniques use nodes to
represent features and edges to convey pairwise
associations, which are usually quantified by
correlation or mutual information. Finding groups of
similar characteristics and choosing non-redundant,
informative subsets are made easier by the creation of
such graphs [20], [21]. These techniques have become
more popular because of their capacity to capture
intricate feature interactions and make it easier to
identify  representative subsets. It has been
demonstrated that the underlying structure of feature
spaces can be efficiently captured by graph-theoretical
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methods, especially those that make use of MSTs [23],
[24].The use of MSTs for cluster detection was initially
presented in Zahn's [39] groundbreaking work, which
also highlighted how they adhere to perceptual
organization principles and showed how they can be
applied in both low and high-dimensional areas. It can
discover clusters without making assumptions about
the distribution of data since it naturally captures
hierarchical structures. Because MST-based clustering
does not rely on presumptions regarding the geometric
distribution of data, it is reliable across a wide range of
application domains.

The Fast Clustering bAsed feature Selection
algorithm (FAST), which has been proposed by Song
et al. [25], employs MST to create the clusters. Nodes
are the features, and the SU value represents the
edge values. FAST operates in two phases. Graph-
theoretic clustering techniques are used in the first
phase to group features into clusters. To create the
final subset of features, the most representative
feature from each cluster that has a strong correlation
with the target classes is chosen in the second stage.
In order to ensure relative independence within
clusters, the authors of [26] group similar features
using correlation-based similarity measures. It refines
the chosen feature subset using correlation measures
and utilizes an MST-based approach for effective
clustering. Another graph-centric clustering technique
was presented by Magendiran and Jayaranjani[27] to
aggregate the features into various, comparatively
independent clusters. Liu et al. [28] proposed a
supervised learning technique called MST-based
Feature Clustering (MFC). The information-theoretic
metric of variation of information is used to evaluate
the relevance and redundancy of features. The
approach chooses representative features that
optimize relevance to the target label while minimizing
pairwise redundancy during clustering. These methods
select a representative feature from each cluster to
obtain the final feature set.

The preceding discussion demonstrates that
current studies based on clustering aim to group solely
redundant features, neglecting the impact of including
complementary features within the same cluster. In
addition, the majority of these methods choose only
one representative feature from each cluster. In this
work, FSGC is introduced that combines MI and graph
centric approach to address these concerns.

. THE
SELECTION

PrROPOSED METHOD FOR FEATURE

This section contains a detailed discussion of our
proposed study, Feature Selection using Graph based
Clustering (FSGC). While attempting to incorporate
features that offer additional information, FSGC
aggregates redundant features in the same cluster. To
get the final set of features Fs from the original feature
set (F), it then chooses one or more features from the
cluster(s) that was constructed. The phases taken in
our proposed work is depicted in Figure. 1.

Start

Feature Set (F)

Candidate Feature Selection (Fc)

Graph Creation

MST and Cluster Formation

v ' y
‘ Cluster - 1 ‘ | Cluster - 2 ‘ -----------
1 1 )

‘ Feature Selection from Each Cluster |

Final Feature List (Fg)

End

Figure 1: Proposed Method’s Workflow.

Mutual Information (MI) quantifies how much
information one random variable contains about
another. Its value can be between 0 to co. MI can be
normalized using different ways and some of them are
discussed in [25], [40]. In FSGC, the relevance of a
feature to the target class is measured by normalizing
the MI value using Symmetric Uncertainty (SU). The
SU, (redundancy) value between two features f; and f;
is calculated as follows

2XI(fisf )
SU(fi: ) = - 4)

H(fp)+H(f})
where, H(f;)and H(f;) are the entropies of fi and f;
respectively. Likewise, SU. (complementary) between
two features fi and f; given the class label C is
computed as

2XI(F i 41C)
SUfis fi1C) = ——-2=

5
H(f)+H(f§) ©®)

A.  Graph and Cluster Formation

In a dataset, every feature is not equally important
due to the noise and irrelevancy of the features.
Therefore, removal of these irrelevant features is
important. To remove these, bias corrected Ml value
between a feature and a class (Relevance) is
computed using (6)

(I-1)(F-1)

I'(f; ©) = 1(f; ©) — L2 ()

where C represents class labels, 7 denotes the
number of intervals of f, i represents the number of
classes and the total number of samples is N. The
corresponding critical value of (6) is

x& =1(f;;C) X 2N In2 @)

The features in the original feature set F are
eliminated if their relevancy value falls below the
corresponding yZ2critical value. After this step we get
our candidate features list F; that will be used in the
next phase of FSGC. Line 1 - Line 8 describes this
process depicted in Algorithm 1.
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Algorithm 1 FSGC Algorithm

Require: Feature set, F
Ensure: Selected Feature Set. F,
L eME <0
2 for f; € F do
3 Jr(fi) & fi with respect to C' using Eq. (6)
@ Y&(R) + Calculate using Eq. (7)
s if Jg(fi) » xA(R) then
6 FL«FUf;
7. endif
. end for
o (7 NULL
10: for (f;. f;) € F. do
1: - SUp «Caleulate SUy, nsing Eq. (4)
122 Insert fi and f; with Sl.-",‘f as the edge value in G
13: end for
14: minST « Kruskal'sAlgorithm(G)
15: Forest & minST
16: for edge ¢;; € Forest do

o

1 SU,, «Calculate SU, nsing Eq. (5)

s if SUy; < SUR, & SUy,; < SUg; & SUe,; < SUR, & SU,; < SUg, then
19: Forest « Forest — ;5

20 end if

21: end for

22: for Tree T; € Forest do

Sort features in T; in decreasing order based on corresponding Relevance(R)
value
uw  FeiGeT\h

25: for f i € T, do

28 Jigmi(f;)  Caleulate using Eq. (3) and corresponding x* critical value
o if Jigai(f;) > x* then

2 F < FgUf;

29: end if

s0:  end for

s F, e« FsUF,

32: end for

33 return Fy

To construct the fully connected graph (G), the
features of F. are used. The redundancy SU, value
between two features is used as the edge value of G.
Afterwards. Kruskal's algorithm is applied on G to
construct the MST. The reason MST-based clustering
algorithms are utilized is that they capture global
structure, are widely used in real world, and do not
presuppose that data points are placed around centers
or distanced by a typical geometric curve. Moreover,
Kruskal's approach is appropriate for large feature sets
and operates in O(ElogE), where E denotes the
number of edges (in this case, feature pairs).

Afterwards, to group the redundant features as well
as complementary ones into the same cluster the
condition in Line 18 of Algorithm 1 is applied. It
indicates that if both of the connecting features’
redundancy and complementary information are lower
than their relevancy values to the target class, then
they are most likely does not share same
characteristics. Therefore, the connecting edge should
be removed and they should be grouped into distinct
clusters. The remaining clusters are generated in a
similar manner.

Example: Figure. 2 illustrates the example of cluster
creation. In this scenario, f, f,, f3, f; and fs represent
the candidate feature list, while e; is the edge value
linking feature f; to feature f;. Once the MST is formed
with these features, there is only one connecting edge
between the two features. To form the cluster(s), the
edge(s) to be removed depend on Line 18 of
Algorithm 1. Assuming in this case that e,4 meets the
criterion and its removal results in two clusters, {f;, f,,
fg} and {f4, f5}

fa

Figure 2: Cluster Creation Example.

B. Final Feature Set Selection

Subsequently, for the selection of the final set of
features (Fs), JBMI is applied in each cluster. It selects
the feature with the most relevant score and then
check for other features if they can provide
complementary information regarding the class. If the
condition in Algorithm 1 Lines 27-29 satisfies, then
that feature is also included in the final feature set F.
The overall feature selection process of FSGC method
is shown in Algorithm 1. The experimental results are
generated using this selected feature set, which is
examined in the part that follows.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we compute and conduct several
tests and present the results in comparison with Five
other state-of-the-art methods to show the efficacy of
our proposed method, FSGC. We have also discussed
the dataset description and implementation details in
here.

A. Dataset Description and Experimental Setup

Twenty benchmark datasets from various domains
are chosen from the UCI machine learning repository
[41] and Knowledge Extraction based on Evolutionary
Learning (KEEL) [42] which are popularly used in

WWW.imjst.org

IMJSTP29121251

8869


http://www.imjst.org/

International Multilingual Journal of Science and Technology (IMJST)
ISSN: 2528-9810
Vol. 10 Issue 12, December - 2025

different works in order to assess the effectiveness of
our proposed approach. Moreover two network
intrusion detection datasets (IDSs), AWID [43] and
NSL-KDD [44] are chosen to check the performance of
anomalous traffic classification using FSGC. Table 1
describes the dataset information.

Table 1: Dataset Description

Dataset Feature Class Instances
Iris 4 3 150
Appendicitis 7 2 106
Ecoli 7 2 336
Pima 8 2 768
Glass 9 6 214
Saheart 9 2 462
Heart 13 2 270
Cleveland 13 5 297
Marketing 13 9 6876
Vehicle 18 2 846
Hepatitis 19 2 80
Waveform 21 3 5000
Thyroid 21 3 7200
Parkinsons 22 2 195
Steel 27 7 1941
Dermatology 34 6 366
Spectfheart 44 2 267
Sonar 60 2 208
Coil2000 85 2 9822
Madelon 500 2 2600
Security Dataset
AWID 78 2 575315
NSL-KDD 42 5 148517

To find out the experimental result, five state-of-the-
arts methods, FAST, JMI with COBRA (JC),
DSbM_BE, rMRMR and MRMD are compared with our
proposed work. The amount of features that FSGC
selects is utilized to generate the outcomes of the two
ranking methods, rMRMR and MRMD. Linear Support
Vector Machine (SVM) algorithm is used to obtain the
result with 10-fold cross validation (10-CV) technique
and five equal width discretization. Also, to get further
experimental result on IDSs dataset another method
by Nkiama et al. [4] is compared and in this setting
Decision tree (DT) classifier is used to detect the
anomalous traffic.

B. Result and Discussion

In this section, FSGC with other methods results on
the datasets in Table 1 are presented to show the
superiority of our method's performance than others.
Table 2 presents the accuracy results of FSGC with
other comparative methods. The results indicate that
overall accuracies of the proposed method are better
than those are compared with. For example, in
Hepatitis dataset the accuracy of FSGC is 85%.

Though FAST achieve similar accuracy however the
number of features selected by FSGC(4) is less than
FAST(5). Although the accuracy of the suggested
method (74.10%) in the Sonar dataset is somewhat
lower than that of DSbM_BE (76.40%), the number of
features chosen by FSGC is substantially lower. This
depicts that FSGC selects the relevant features and
remove the redundant ones. The chosen feature
number, however, is greater than the comparative
approaches in some datasets (such as Steel). This is
because it uses JBMI to identify the most essential
features for each cluster, together with those that offer
additional information to improve performance.
Additionally, we have displayed the number of FSGC
wins, ties, or losses comparing with others. It
demonstrates that our proposed approach typically
outperforms other state-of-the-art methods.

Moreover t-test with a 5% level of significance is
conducted to provide a comprehensive understanding
of the superiority of FSGC. The result shows the
number of significant win or loss of ours with other
methods presented in the third row from the last in
Table 2. Furthermore, another significance test used in
different papers, Friedman rank test [45] is also
conducted to elucidate the upper hand of our
approach. After rejecting the null hypothesis, it applies
the Nemenyi test [46] to compare which method's
performance is significant. This result indicates that
FSGC ranks highest among the other methods in this
table's second-to-last row. The table's final row further
demonstrates that, at 95% confidence interval, the
Friedman rank test of FSGC performs noticeably better
than other state-of-the-art techniques indicated by the
symbol . Additionaly, f-score is also computer to get a
better insight of FSGC shown in Table 3.
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Table 2: Accuracy (SVM) comparison with state-of-the-art methods. Bold face results indicate an overall win, while (*) and (°) indicate a significant win or
loss related to that approach.

Dataset My method FAST JC DSbM_BE MRMD rMRMR
Iris 0.940(2) 0.880(1)* 0.913(2) 0.927(2) 0.953(2) 0.933(2)
Appendicitis 0.869(1) 0.869(1) 0.850(4) 0.800(2) 0.750(1)* 0.800(1)*
Ecoli 0.970(3) 0.967(2) 0.944(5)* 0.947(3) 0.941(3)* 0.944(3)*
Pima 0.744(5) 0.741(2) 0.736(8) 0.745(5) 0.649(5)* 0.722(5)
Glass 0.528(3) 0.444(2)* 0.517(7) 0.509(4) 0.443(3)* 0.509(3)
Saheart 0.721(5) 0.654(1) 0.717(9) 0.711(5) 0.730(5) 0.717(5)
Heart 0.833(9) 0.800(4) 0.811(10) 0.793(6) 0.826(9) 0.830(9)
Cleveland 0.613(6) 0.589(4) 0.534(13)* 0.538(4)* 0.553(6)* 0.522(6)*
Marketing 0.32(10) 0.263(1)* 0.313(10) 0.305(4)* 0.316(10)  0.319(10)
Vehicle 0.749(6) 0.749(1) 0.744(16)* 0.744(2)* 0.744(6)* 0.744(6)*
Hepatitis 0.850(4) 0.85(5) 0.822(18) 0.833(4) 0.811(4) 0.811(4)
Waveform 0.847(19) 0.701(6)* 0.808(13)* 0.653(3)* 0.854(19)  0.84(19)
Thyroid 0.932(8) 0.932(6) 0.929(18)* 0.925(4)* 0.933(8) 0.931(8)
Parkinsons 0.845(12) 0.850(5) 0.845(14) 0.815(11) 0.81(12) 0.84(12)
Steel 0.709(22) 0.563(7)* 0.696(20) 0.66(13)* 0.679(22)*  0.688(22)
Dermatology =~ 0.964(32) 0.762(8)* 0.953(22) 0.96(30) 0.97(32) 0.955(32)
Spectfheart 0.79(10) 0.802(7) 0.743(31)* 0.796(15) 0.786(10)  0.786(10)
Sonar 0.741(6) 0.707(13)  0.727(60) 0.764(15) 0.645(6)* 0.741(6)
Coil2000 0.94(39) 0.94(17) 0.940(85)* 0.940(6)* 0.94(39)* 0.94(39)*
Madelon 0.599(11) 0.566(60)*  0.543(500)*  0.613(11) 0.552(11)*  0.578(11)
WI/T/L - 13/5/2 18/2/0 15/1/4 14/1/5 18/2/0
Sig. WL - 7/0 8/0 710 10/0 5/0
Avg. Rank 1.83 3.68 4.08 3.80 3.85 3.78
F-Rank Test - v v v v v
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Table 3: F-score (SVM) comparison with state-of-the-art methods. Bold face results indicate an overall win, while (*) and (°) indicate a significant win or loss

related to that approach.

Dataset My method FAST JC DSbM BE MRMD rMRMR
Iris 0.940(2) 0.875(1)* 0.919(2) 0.936(2) 0.958(2) 0.939(2)
Appendicitis 0.854(1) 0.854(1) 0.785(4) 0.692(2)* 0.429(1)* 0.688(1)*
Ecoli 0.966(3) 0.963(2) 0.712(5)* 0.752(3)* 0.485(3)* 0.692(3)*
Pima 0.741(5) 0.722(2) 0.706(8)* 0.718(5) 0.500(5)* 0.690(5)*
Glass 0.484(3) 0.391(2)* 0.396(7)* 0.347(4)* 0.255(3)* 0.386(3)*
Saheart 0.714(5) 0.566(1)* 0.671(9) 0.668(5) 0.684(5) 0.670(5)
Heart 0.833(9) 0.799(4) 0.81(10) 0.792(6) 0.824(9) 0.830(9)
Cleveland 0.569(6) 0.552(4) 0.303(13)* 0.265(4)* 0.281(6)* 0.291(6)*
Marketing 0.233(10) 0.156(1)* 0.207(10)* 0.184(4)* 0.195(10)* 0.214(10)*
Vehicle 0.642(6) 0.642(1) 0.427(16)* 0.427(2)* 0.427(6)* 0.427(6)*
Hepatitis 0.836(4) 0.836(5) 0.704(18) 0.738(4) 0.604(4)* 0.659(4)*
Waveform 0.846(19) 0.694(6)* 0.808(13)* 0.649(3)* 0.854(19) 0.84(19)
Thyroid 0.903(8) 0.903(6) 0.446(18)* 0.320(4)* 0.526(8)* 0.504(8)*
Parkinsons 0.835(12) 0.851(5) 0.772(14) 0.731(11)* 0.691(12)* 0.766(12)
Steel 0.705(22) 0.532(7)* 0.704(20) 0.681(13) 0.615(22)* 0.655(22)*
Dermatology 0.964(32) 0.712(8)* 0.948(22) 0.96(30) 0.968(32) 0.951(32)
Spectfheart 0.755(10) 0.758(7) 0.592(31)* 0.637(15)* 0.44(10)* 0.537(10)*
Sonar 0.737(6) 0.696(13) 0.727(60) 0.77(15) 0.646(6)* 0.747(6)
Coil2000 0.911(39) 0.911(17) 0.484(85)* 0.485(6)* 0.485(39)* 0.484(39)*
Madelon 0.598(11) 0.566(60)* 0.544(500)* 0.613(11) 0.552(11)* 0.579(11)
WI/T/L - 13/5/2 20/0/0 18/0/2 17/0/3 19/0/1
Sig. WI/L - 8/0 11/0 11/0 15/0 12/0
Avg. Rank 1.53 3.38 3.90 4.00 4.30 3.90
F-Rank Test - v v v v v

Network Intrusion Detection Datasets Result and
Discussion:

This section discusses the result of IDSs data in a
more detailed way. From Table 1, it can be seen that
NSL-KDD dataset is a multi-class dataset. It contains
five class labels which are Normal, DoS, R2L, Probe
and U2R discussed in [44]. We have created two
versions of FSGC, which we will refer to as NSL-KDD
(B) and NSL-KDD (M), in order to gain a better
understanding of FSGCs application to this dataset.

NSL-KDD (B) will have two (Binary) classes as target
labels (Normal, Attack) where all attack traffics will be
treated as Attack classes, with the exception of
Normal traffic flows while NSL-KDD (M) will have all
the five classes.

Results from FSGC and all other approaches on
IDS datasets are summarized in Table 4 and 5. From
these two tables, we can observe that FSGC performs
better than all other comparative approaches when it
comes to recognizing each single class in a multi-class
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dataset or solving a binary class problem, as
demonstrated by the accuracy and F-score results.
Binary and multiclass results are examined in the
following sections to provide a clearer picture of the
IDS datasets outcomes.

Table 4: Overall Accuracy result using Decision Tree on Network Intrusion Detection Dataset

Dataset My Method FAST JC DSbM_BE rMRMR Nkiama et al.
AWID 0.9966(21) 0.9638(12) 0.9925(41) 0.7575(3) 0.9890 0.9341(8)
NSL-KDD (B) 0.9757(32) 0.8686(5) 0.9651(32) 0.8297(6) 0.9679 0.8418(4)
NSL-KDD (M) 0.9765(34) 0.8531(8) 0.9716(31) 0.7981(10) 0.9743 0.7749(4)
Table 5: Overall F-score result using Decision Tree on Network Intrusion Detection Dataset
Dataset My Method FAST JC DSbM_BE rMRMR Nkiama et al.
AWID 0.9966 0.9622 0.9737 0.7898 0.9891 0.9116
NSL-KDD (B) 0.9757 0.867 0.9653 0.8468 0.968 0.8416
NSL-KDD (M) 0.9762 0.8429 0.8764 0.5569 0.8836 0.7718
is due to the fact that rMRMR can also record feature
interaction information similar to ours. Moreover, when
FSGC is applied to the NSL-KDD (B) dataset, the
1) Binary-class Dataset accuracy and F-score results are fairly comparable
Fi 3 and 4 h dF shown in Figure. 5 and 6 accordingly. This was made
Ilguref A?/?/ID t;))_resentsl the a,c\:lcurac?/ an q A—scoLe possible by choosing the most pertinent and
&esu ts ‘o | inary (iasli ( ormal an ttac ) complementary feature set, which aided in capturing
ataset_s result respectively. From It, we can notice the feature interaction information from the cluster
that while FSGC and other approaches are quite equal formation by FSGC
in regular traffic analysis, FSGC performs significantly ’
better than all other methods with the exception of the
rMRMR method in attack class data classification. This
1.0 B FSGC 1.0 B FSGC
B FAST B FAST
. C I JC
[ DSbM_BE [ DSbM_BE
0.8 4 I -MRMR 0.8 I rMRMR
BN Nkiama et al. BB Nkiama et al
2 0.6 - & 0.6
< 0.4 4 i 0.4
0.24 024
0.0 0.04
Normal Attack Normal Attack
Class Type Class Type
Figure 3: Class wise accuracy FSGC and other state-of-the-art methods Figure 4: Class wise F-score of FSGC and other state-of-the-
on AWID dataset. art methods on AWID dataset.
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Nermal Aftack
Class Type

Figure 5: Class wise accuracy of FSGC and other state-of-the-art
methods on NSL-KDD (B).

B Nkiama of al

F-score

Normal Attack

Class Type

Figure 6: Class wise F-score of FSGC and other state-of-the-art methods
on NSL-KDD (B).

2) Multi-class Dataset

To observe how well FSGC handles multi-class IDS
datasets, it is additionally applied to the NSL-KDD (M)
dataset. We can observe from the accuracy
comparison of the class results shown in Figure 7 that
the FSGC performs more effectively or comparably to
other comparative ones when it comes to classifying
distinct classes. Additionally, in order to obtain a
better understanding of the results displayed in Figure
8, we have also computed the F-scores of these
approaches. Apart from these results, to observe the
various class identification capabilities of our proposed
FSGC approach, we present the confusion matrix
result displayed in Table 6.

1.04

B Nkiama et al.
0.8

Accuracy
o
(2]

1

o
=
1

024

004

Normal R2L
Class Type

Figure 7: Class wise accuracy of FSGC and other comparative methods on
NSL-KDD (M).

08 4 EEE Nkiama et al.

06+

F-Score

0.4

024

004

Normal Dos R2L Probe U2R

Class Type

Figure 8: Class wise F-score of FSGC and other comparative methods on
NSL-KDD (M).
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Table 6: Confusion Matrix of NSL-KDD (M)

Normal Dos R2L Probe U2R

Normal | 75909 328 453 338 26

Dos 955 52414 5 11 0
R2L 911 3 2822 5 8
Probe 276 25 5 13722 49
U2R 69 0 19 4 160

V. CONCLUSION

The work Feature Selection using Graph based
Clustering (FSGC) is presented in this paper. To
obtain the candidate feature set, it first eliminates the
features that are not relevant. This set is used to
create a fully connected graph with symmetric
uncertainty values serving as the graph's edges and
features acting as its nodes. The Minimum Spanning
Tree is then built using Kruskal's algorithm. Clusters
are subsequently formed from it in a way that groups
similar features together with complementary
information. JBMI is then performed to each cluster to
capture the most crucial and complementary
information provided by the features in order to
produce the final feature set. The performance of the
FSGC is examined using twenty publicly available
benchmark datasets from various fields. The findings
demonstrate that FSGC performs better than other
state-of-the-art techniques in the majority of instances,
both in terms of accuracy and F-scores. Furthermore,
it is applied on network intrusion detection system
datasets, demonstrating encouraging results in
distinguishing abnormal traffic from regular traffic in
both binary and multi-class datasets.
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