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Abstract—Feature selection transcends mere 
dimensionality reduction, serving as a strategic 
instrument that enhances model interpretability, 
generalization, optimizes computational 
efficiency, improves model accuracy, mitigates 
overfitting, by isolating the most predictive 
features, thereby facilitating the development of 
robust and generalizable machine learning 
models. The researchers introduced several 
feature selection techniques to select significant 
and pertinent features. They used a variety of 
techniques, including filter, wrapper and 
embedding methods. However, they are unable to 
choose the optimal features, and a number of 
them (such as the wrapper technique) rely on the 
classification algorithm. These methods, which 
also use correlation, distance measures, are 
unable to represent the intricate and non-linear 
interactions of the features. Therefore, 
considering the ability to capture both linear and 
non-linear interactions, recent years have seen a 
rise in the use of techniques based on mutual 
information (MI). Graph-based techniques using 
MI are becoming more and more popular due to 
their enhanced classification accuracy, resilience, 
and generalizability in fields such as 
bioinformatics, text mining, image classification, 
and network systems. In this study, we presented 
Feature Selection using Graph based Clustering 
(FSGC), a graph-based clustering technique that 
groups feature(s) with similar characteristics by 
combining the MI and clustering technique. In 
FSGC, the cluster(s) are formed in such a way that 
provide redundant and complementary 
information. The experimental results on twenty 
benchmark datasets from different domains 
demonstrate that FSGC performs better than other 
compared state-of-the-art approaches in the 
majority of cases. Furthermore, it is used to 
examine the effects of separating attack class 
traffic from regular network traffic on network 
intrusion detection (IDS) datasets. 

Keywords—Feature Selection, Mutual 
Information, Clustering, Graph, Minimum 
Spanning Tree, Network Intrusion Detection 
System. 

I.  INTRODUCTION 

The process of feature selection is essential to 
build successful classification models, especially when 

working with high-dimensional datasets where 
irrelevant and redundant features can have a 
detrimental influence on computing efficiency and 
accuracy. Feature selection is an essential procedure 
that enhances model accuracy, generalization, and 
computing efficiency by choosing a subset of pertinent 
characteristics and removing unnecessary or noisy 
ones[1]. Finding a subset of features that are most 
informative for the target variable is the main goal in 
order to enhance the model interpretability and lower 
the possibility of overfitting [2]. Langley [3] divided 
various feature selection techniques into two major 
categories (filter and wrapper) according to how much 
they rely on the inductive process that will ultimately 
employ the chosen subset. The inductive algorithm 
serves as the evaluation function for wrapper methods, 
whereas filter methods operate independently of it. In 
addition to this, there are hybrid approaches that 
integrate the wrapper and filter mechanisms.  Nkiama 
et al. [4] proposed a method, where the relevant 
feature subset is chosen from the remaining features 
using Recursive Feature Elimination after the features 
are ranked according to their individual strengths using 
the ANOVA F-test univariate filter method. Filter, 
wrapper, and embedding approaches are examples of 
traditional feature selection techniques that frequently 
fail to capture intricate dependencies between 
features, particularly in the presence of non-linear or 
higher-order interactions [2], [5], [6]. 

Mutual Information (MI), a non-linear dependence 
metric that can capture complex statistical 
relationships between variables, has drawn a lot of 
interest. It can detect both linear and non-linear 
relationships, which makes it particularly useful for 
finding pertinent features for classification problems 
[7], [8], [9]. However, when calculating the value of MI 
for a finite number of samples, one of the main 
disadvantages is that there exists some mistake (bias) 
[10], [11]. By employing the bias-corrected MI 
mechanism to further refine relevancy estimations, the 
influence of sample size disparities can be reduced 
and classification performance can be enhanced [12], 
[13], [14]. The bias of MI towards multi-valued features 
can be reduced by normalizing it. Estévez et al.[15]  
presented a method, Normalized Mutual Information 
Feature Selection (NMIFS) where the redundancy of 
the features are measured by calculating the average 
of normalized MI (NMI). 

Conventional MI-based feature selection 
techniques frequently select overlapping features by 
using greedy tactics that ignore inter-feature 
redundancy [16]. Clustering based methods can play a 
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vital role which aims to group similar data points. 
Agglomerative hierarchical clustering stands out above 
other methods due to its ease of use and capacity to 
reveal nested structures through the iterative merging 
of the most similar clusters.  Because of this, it is 
useful in fields including network intrusion detection 
systems, image analysis, bioinformatics, and social 
networks [17], [18], [19]. However, it is sensitive to 
early-stage verdicts and computationally challenging. 
Besides, cluster number specification affects the 
efficiency of hierarchical clustering algorithms and may 
hinder the achievement of the optimal feature set. To 
overcome this, researchers have investigated graph-
based clustering techniques, such as spectral 
clustering, minimum spanning tree (MST) clustering, 
divide data using cut-based or connectivity-based 
procedures after modeling it as a graph which are 
more scalable and better at handling complex, non-
convex structures [20]. These methods represent data 
as a graph in which dependencies, such as MI, 
correlation or Symmetric Uncertainty (SU), are 
represented as edges and features as nodes. 
Clustering these graph representations facilitates the 
discovery of representative subsets and groups of 
shared characteristics [21]. Recent work integrates 
feature selection with hierarchical clustering by 
interpreting single linkage dendrograms as Minimum 
Spanning Tree (MST), enabling simultaneous 
optimization of feature subsets and cluster structures 
while preserving information [22]. 

Graph based feature selection has become an 
appealing alternative by utilizing graphs' capacity to 
express complex interactions between features [23], 
[24]. Song et al. [25] presented a graph based 
clustering method namely Fast clustering bAsed 
feature Selection algoriThm (FAST) using a cut-based 
technique that uses Symmetric uncertainty as edge 
value to form different clusters with the help of 
Minimum Spanning Tree (MST). Jaganath and 
Sasikumar [26] introduced a method for grouping 
transactional data with similarity scores using MST. 
Nevertheless, they employed correlation similarity 
metrics, which are unable to detect non-linear 
relationships among the features. Magendiran and 
Jayaranjani [27] proposed another graph-based 
selection technique that makes advantage of MST. To 
decide on the final feature subset, Liu et al. [28] 
devised a MST-based Feature Clustering (MFC) 
approach that uses a variation of information metric as 
the edge value to build the MST and then make the 
clusters from it. These approaches, however, only 
choose one representative feature from each cluster, 
ignoring the possibility that involving more informative 
feature(s) could improve algorithm performance. All 
things considered, the combination of graph 
representations, MST clustering, and MI-based 
dependency measures presents a viable method for 
sub-optimal feature selection. This serves as the 
foundation for the method presented in this research. 

In this paper, a Graph based clustering method is 
proposed and the contributions of this work are as the 
followings: 

 Firstly, we presented Feature Selection using 
Graph based Clustering (FSGC), a clustering method 
to group the redundant as well as additional 
information (complementary) given features in the 
same cluster. 

 Secondly, we used JBMI on each cluster to 
choose the most relevant feature along with other 
features that provide additional information in order to 
select the final feature set. 

 Thirdly, in order to analyze the performance of 
FSGC rigorous experiments on twenty benchmark 
datasets are presented. 

 Finally, FSGC is utilized on two well-known 
publicly accessible IDS datasets to see how well it 
distinguishes between typical and unusual traffic in the 
network system. 

The remaining part of the paper is organized as 
follows: Existing works are discussed in Section II, 
whereas our suggested approach is described in 
Section III. Section IV then presents the experimental 
results, and section V provides a summary of the 
study. 

 

II. LITERATURE REVIEW 

Feature selection has been thoroughly researched 
as a way to enhance classification algorithm 
performance by removing redundant and unnecessary 
ones. It improves model correctness, generalization, 
and computational efficiency by selecting a subset of 
relevant attributes and eliminating those that are noisy 
and redundant. Methods of feature selection can be 
broadly divided into filter, wrapper, and embedding. 
Filters, regardless of the selected predictor, choose 
subsets of variables as a pre-processing step, makes it 
computationally efficient and independent of specific 
classifiers. Wrappers rate subsets of variables based 
on their prediction power by using the learning 
machine of interest as a black box. Embedded 
methods are often tailored to certain learning 
machines and carry out variable selection during 
training [1], [3], [9]. Based on the score each feature 
has acquired during the selection process, Nkiama et 
al. [4] provided a feature selection mechanism that 
seeks to both find the features that would increase the 
detection rate and eliminate non-relevant features. A 
decision tree-based classifier is coupled to a recursive 
feature reduction method in order to accomplish that 
goal. The appropriate relevant features were then 
found in order to identify the network's abnormal traffic. 
Traditional feature selection methods sometimes fall 
short in capturing complex feature dependencies, 
especially when non-linear or higher-order interactions 
are present [2], [5], [6], [29]. The ability of MI-based 
filter approaches to capture intricate variable 
relationships makes them especially popular. MI is 
capable of capturing both linear and non-linear 
relationships between the variables [7], [13]. It 
measures statistical dependence, capturing linear and 
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nonlinear relationships [30], and remains invariant 
under invertible, differentiable transformations like 
translations and rotations [30], [31]. 

One of the foundational works in MI-based feature 
selection by Battiti [32] namely Mutual Information 
based Feature Selection (MIFS), who presented an 
approach for choosing features having a high MI with 
the target class. The Mutual Information Feature 
Selection (MIFS) criterion is presented as follows 

𝐽𝑀𝐼𝐹𝑆(𝑓𝑖) = I(𝑓𝑖; C) − β ∑ 𝐼(𝑓𝑖; 𝑓𝑗)𝑓𝑗∈𝑆  (1) 

Here the set of features that are now selected is 
denoted by S. In order to guarantee feature relevance 
(MI between a feature and a class), it incorporates the 

I(𝑓𝑖; C) term; however, it also applies an adjustment to 
enforce low correlations with features that have 
already been chosen in S. This approach makes the 
assumption that we are building our final feature 
subset iteratively, selecting features one after the 

other. The variable parameter 𝛽 in the MIFS criterion, 
which controls the relative relevance of the MI between 
the candidate feature and the previously chosen 
feature(s) with regard to the MI with the target class, 
must be set experimentally. 

Later Yang and Moody [33] used Joint Mutual 
Information (JMI)  to concentrate on enhancing 
complementary (MI between two features given the 
class label) information between features. In the study 
of Brown et al. [34], they demonstrated that prevalent 
heuristics for information-based feature selection are 
approximately iterative conditional likelihood 
maximizers. The JMI criteria for feature is in (2) 

𝐽𝐽𝑀𝐼(𝑓𝑖) = I(𝑓𝑖; C) −
1

|𝑆|
∑ (𝐼(𝑓𝑖; 𝑓𝑗) −𝑓𝑗∈𝑆 𝐼(𝑓𝑖; 𝑓𝑗|𝐶)) (2) 

In this case, fi is the candidate feature that will be 
chosen, S is the feature set that has already been 
chosen, and these three terms stand for relevancy, 
redundancy (MI between two features) and 
complementary respectively. However, there can be 
bias involved in calculating the MI value for a limited 
number of instances, which could impair the model's 
effectiveness. Addressing this, Sharmin et al. [13] 
proposed a work, Joint Bias corrected Mutual 
Information (JBMI) that attempts to resolve it. They 
also calculated the associated critical value. The JBMI 
formula becomes as the following equation 

𝐽𝐽𝐵𝑀𝐼(𝑓𝑖) = I(𝑓𝑖; C) −
(ℐ−1)(𝒦−1)

2𝑁𝑙𝑛2
+

1

|𝑆|
∑ (𝐼(𝑓𝑖; 𝑓𝑗|𝐶) −𝑓𝑗∈𝑆

(ℐ−1)(𝒥−1)𝒦

2𝑁𝑙𝑛2
− I(𝑓𝑖; 𝑓𝑗) +

(ℐ−1)(𝒥−1)

2𝑁𝑙𝑛2
)   (3) 

Here,ℐ, 𝒥 represent the feature intervals of fi and fj. The 
numbers of classes and total samples are denoted by 

𝒦 , N respectively. Most of the feature selection 
methods discussed uses low-dimensional MI, limiting 
high-order dependency capture. The authors of [35] 
addresses this gap by analyzing the use of high-order 
dependencies in MI-based feature selection. They 
presented a technique called RelaxMRMR (rMRMR) 
that establishes a series of assumptions that permit 
high-dimensional MI to be broken down into low-
dimensional terms. By easing the assumptions, they 

developed a systematic method to incorporate higher-
order feature interactions. For a more accurate 
estimation of joint MI, Roy et al. [29] address the bias 
issue for the high-order interaction term. They start by 
figuring just how biased this term is. Additionally, they 

demonstrated that the 𝜒2 distribution is followed when 

selecting features using a 𝜒2  based search. They also 
offered Discretization and feature Selection based on 
bias corrected Mutual information, which is expanded 
by including simultaneous forward selection and 
backward elimination (DSbM_BE). 

As demonstrated in [13], [29] relevancy, 
redundancy, complementary terms may be utilized to 
choose features using the critical values because they 

also follow the 𝜒2 distribution. When a feature shares 
information with others, it may be misinterpreted as 
poor by traditional feature redundancy metrics, even if 
it offers useful additional categorization information. In 
order to solve this, Gao et al. [36] suggested a 
redundancy term that assesses each feature's 
relevance to the target class and presented a method 
namely Min-Redundancy and Max-Dependency 
(MRMD). Naghibi et al. [37] employed a feature subset 
selection method called convex based relaxation 
approximation (COBRA), which uses semi-definite 
programming to search across the subset space. 

Clustering based methods are introduced to 
address the limitations of the conventional MI based 
feature selection techniques. These methods attempt 
to group those features with similar characteristics. 
Agglomerative clustering and its variants have been 
the subject of a significant amount of research. A 
thorough analysis of the clustering methods was given 
by Xu and Wunsch [17], who also highlighted the value 
of hierarchical models in identifying multi-level data 
patterns. A quicker implementation of agglomerative 
clustering was introduced by Müllner [38], which 
decreased the runtime in real-world applications.  
However, early-stage merging faults cannot be fixed 
due to the irreversible nature of the technique, and the 
outcomes differ greatly depending on the linking 
mechanism used.  It restricts the flexibility of 
agglomerative clustering in noisy and high-dimensional 
circumstances. Additionally, the cluster number 
specification may make it more difficult to obtain the 
optimal feature set and has an impact on the 
effectiveness of hierarchical clustering techniques. In 
order to overcome these constraints, the researchers 
have looked into graph-based clustering methods like 
MSTs. 

Graph-based clustering techniques use nodes to 
represent features and edges to convey pairwise 
associations, which are usually quantified by 
correlation or mutual information.  Finding groups of 
similar characteristics and choosing non-redundant, 
informative subsets are made easier by the creation of 
such graphs [20], [21]. These techniques have become 
more popular because of their capacity to capture 
intricate feature interactions and make it easier to 
identify representative subsets. It has been 
demonstrated that the underlying structure of feature 
spaces can be efficiently captured by graph-theoretical 
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methods, especially those that make use of MSTs [23], 
[24].The use of MSTs for cluster detection was initially 
presented in Zahn's [39] groundbreaking work, which 
also highlighted how they adhere to perceptual 
organization principles and showed how they can be 
applied in both low and high-dimensional areas. It can 
discover clusters without making assumptions about 
the distribution of data since it naturally captures 
hierarchical structures. Because MST-based clustering 
does not rely on presumptions regarding the geometric 
distribution of data, it is reliable across a wide range of 
application domains. 

The Fast Clustering bAsed feature Selection 
algorithm (FAST), which has been proposed by Song 
et al. [25], employs MST to create the clusters. Nodes 
are the features, and the SU value represents the 
edge values. FAST operates in two phases. Graph-
theoretic clustering techniques are used in the first 
phase to group features into clusters. To create the 
final subset of features, the most representative 
feature from each cluster that has a strong correlation 
with the target classes is chosen in the second stage. 
In order to ensure relative independence within 
clusters, the authors of [26] group similar features 
using correlation-based similarity measures.  It refines 
the chosen feature subset using correlation measures 
and utilizes an MST-based approach for effective 
clustering. Another graph-centric clustering technique 
was presented by Magendiran and Jayaranjani[27] to 
aggregate the features into various, comparatively 
independent clusters. Liu et al. [28] proposed a 
supervised learning technique called MST-based 
Feature Clustering (MFC). The information-theoretic 
metric of variation of information is used to evaluate 
the relevance and redundancy of features.  The 
approach chooses representative features that 
optimize relevance to the target label while minimizing 
pairwise redundancy during clustering. These methods 
select a representative feature from each cluster to 
obtain the final feature set. 

The preceding discussion demonstrates that 
current studies based on clustering aim to group solely 
redundant features, neglecting the impact of including 
complementary features within the same cluster. In 
addition, the majority of these methods choose only 
one representative feature from each cluster. In this 
work, FSGC is introduced that combines MI and graph 
centric approach to address these concerns. 

 

III. THE PROPOSED METHOD FOR FEATURE 

SELECTION 

This section contains a detailed discussion of our 
proposed study, Feature Selection using Graph based 
Clustering (FSGC). While attempting to incorporate 
features that offer additional information, FSGC 
aggregates redundant features in the same cluster. To 
get the final set of features Fs from the original feature 
set (F), it then chooses one or more features from the 
cluster(s) that was constructed. The phases taken in 
our proposed work is depicted in Figure. 1. 

Mutual Information (MI) quantifies how much 
information one random variable contains about 
another. Its value can be between 0 to ∞. MI can be 
normalized using different ways and some of them are 
discussed in [25], [40]. In FSGC, the relevance of a 
feature to the target class is measured by normalizing 
the MI value using Symmetric Uncertainty (SU). The 
𝑆𝑈𝑟 (redundancy) value between two features fi and fj 
is calculated as follows 

𝑆𝑈𝑟(𝑓𝑖; 𝑓𝑗) =
2×𝐼(𝑓𝑖;𝑓𝑗)

𝐻(𝑓𝑖)+𝐻(𝑓𝑗)
 (4) 

where, 𝐻(𝑓𝑖)and 𝐻(𝑓𝑗)  are the entropies of fi and fj 

respectively. Likewise, 𝑆𝑈𝑐  (complementary) between 
two features fi and fj given the class label C is 
computed as 

𝑆𝑈𝑐(𝑓𝑖; 𝑓𝑗|𝐶) =
2×𝐼(𝑓𝑖;𝑓𝑗|𝐶)

𝐻(𝑓𝑖)+𝐻(𝑓𝑗)
 (5) 

A. Graph and Cluster Formation 

In a dataset, every feature is not equally important 
due to the noise and irrelevancy of the features. 
Therefore, removal of these irrelevant features is 
important. To remove these, bias corrected MI value 
between a feature and a class (Relevance) is 
computed using (6) 

I′(𝑓𝑖; C) = I(𝑓𝑖; C) −
(ℐ−1)(𝒦−1)

2𝑁𝑙𝑛2
 (6) 

where C represents class labels, ℐ  denotes the 
number of intervals of fi, 𝒦 represents the number of 
classes and the total number of samples is N. The 
corresponding critical value of (6) is  

𝜒𝐶
2 = I(𝑓𝑖; C) × 2N ln2 (7) 

The features in the original feature set F are 
eliminated if their relevancy value falls below the 
corresponding 𝜒2critical value. After this step we get 
our candidate features list Fc that will be used in the 
next phase of FSGC. Line 1 - Line 8 describes this 
process depicted in Algorithm 1. 

 

Figure 1: Proposed Method’s Workflow. 
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To construct the fully connected graph (G), the 
features of Fc are used. The redundancy 𝑆𝑈𝑟  value 
between two features is used as the edge value of G. 
Afterwards. Kruskal's algorithm is applied on G to 
construct the MST. The reason MST-based clustering 
algorithms are utilized is that they capture global 
structure, are widely used in real world, and do not 
presuppose that data points are placed around centers 
or distanced by a typical geometric curve. Moreover, 
Kruskal's approach is appropriate for large feature sets 
and operates in 𝑂(𝐸 log 𝐸) , where E denotes the 
number of edges (in this case, feature pairs).  

Afterwards, to group the redundant features as well 
as complementary ones into the same cluster the 
condition in Line 18 of Algorithm 1 is applied. It 
indicates that if both of the connecting features’ 
redundancy and complementary information are lower 
than their relevancy values to the target class, then 
they are most likely does not share same 
characteristics. Therefore, the connecting edge should 
be removed and they should be grouped into distinct 
clusters. The remaining clusters are generated in a 
similar manner. 

 

Example: Figure. 2 illustrates the example of cluster 
creation. In this scenario, f1, f2, f3, f4 and f5 represent 
the candidate feature list, while eij is the edge value 
linking feature fi to feature fj. Once the MST is formed 
with these features, there is only one connecting edge 
between the two features. To form the cluster(s), the 
edge(s) to be removed depend on Line 18 of 
Algorithm 1. Assuming in this case that e24 meets the 
criterion and its removal results in two clusters, {f1, f2, 
f3} and {f4, f5}. 

B. Final Feature Set Selection 

Subsequently, for the selection of the final set of 
features (Fs), JBMI is applied in each cluster. It selects 
the feature with the most relevant score and then 
check for other features if they can provide 
complementary information regarding the class. If the 
condition in Algorithm 1 Lines 27-29 satisfies, then 
that feature is also included in the final feature set Fs. 
The overall feature selection process of FSGC method 
is shown in Algorithm 1. The experimental results are 
generated using this selected feature set, which is 
examined in the part that follows.  

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we compute and conduct several 
tests and present the results in comparison with Five 
other state-of-the-art methods to show the efficacy of 
our proposed method, FSGC. We have also discussed 
the dataset description and implementation details in 
here. 

 

A. Dataset Description and Experimental Setup 

Twenty benchmark datasets from various domains 
are chosen from the UCI machine learning repository 
[41] and Knowledge Extraction based on Evolutionary 
Learning (KEEL) [42]  which are popularly used in 

Figure 2: Cluster Creation Example. 
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different works in order to assess the effectiveness of 
our proposed approach. Moreover two network 
intrusion detection datasets (IDSs), AWID [43] and 
NSL-KDD [44] are chosen to check the performance of 
anomalous traffic classification using FSGC. Table 1 
describes the dataset information. 

Table 1: Dataset Description 

Dataset Feature Class Instances 

Iris 4 3 150 

Appendicitis 7 2 106 

Ecoli 7 2 336 

Pima 8 2 768 

Glass 9 6 214 

Saheart 9 2 462 

Heart 13 2 270 

Cleveland 13 5 297 

Marketing 13 9 6876 

Vehicle 18 2 846 

Hepatitis 19 2 80 

Waveform 21 3 5000 

Thyroid 21 3 7200 

Parkinsons 22 2 195 

Steel 27 7 1941 

Dermatology 34 6 366 

Spectfheart 44 2 267 

Sonar 60 2 208 

Coil2000 85 2 9822 

Madelon 500 2 2600 

Security Dataset 

AWID 78 2 575315 

NSL-KDD 42 5 148517 

 

To find out the experimental result, five state-of-the-
arts methods, FAST, JMI with COBRA (JC), 
DSbM_BE, rMRMR and MRMD are compared with our 
proposed work. The amount of features that FSGC 
selects is utilized to generate the outcomes of the two 
ranking methods, rMRMR and MRMD. Linear Support 
Vector Machine (SVM) algorithm is used to obtain the 
result with 10-fold cross validation (10-CV) technique 
and five equal width discretization. Also, to get further 
experimental result on IDSs dataset another method 
by Nkiama et al. [4] is compared and in this setting 
Decision tree (DT) classifier is used to detect the 
anomalous traffic. 

B. Result and Discussion 

In this section, FSGC with other methods results on 
the datasets in Table 1 are presented to show the 
superiority of our method's performance than others. 
Table 2 presents the accuracy results of FSGC with 
other comparative methods. The results indicate that 
overall accuracies of the proposed method are better 
than those are compared with. For example, in 
Hepatitis dataset the accuracy of FSGC is 85%. 

Though FAST achieve similar accuracy however the 
number of features selected by FSGC(4) is less than 
FAST(5). Although the accuracy of the suggested 
method (74.10%) in the Sonar dataset is somewhat 
lower than that of DSbM_BE (76.40%), the number of 
features chosen by FSGC is substantially lower. This 
depicts that FSGC selects the relevant features and 
remove the redundant ones. The chosen feature 
number, however, is greater than the comparative 
approaches in some datasets (such as Steel).  This is 
because it uses JBMI to identify the most essential 
features for each cluster, together with those that offer 
additional information to improve performance. 
Additionally, we have displayed the number of FSGC 
wins, ties, or losses comparing with others. It 
demonstrates that our proposed approach typically 
outperforms other state-of-the-art methods. 

Moreover t-test with a 5% level of significance is 
conducted to provide a comprehensive understanding 
of the superiority of FSGC. The result shows the 
number of significant win or loss of ours with other 
methods presented in the third row from the last in 
Table 2. Furthermore, another significance test used in 
different papers, Friedman rank test [45] is also 
conducted to elucidate the upper hand of our 
approach. After rejecting the null hypothesis, it applies 
the Nemenyi test [46] to compare which method's 
performance is significant. This result indicates that 
FSGC ranks highest among the other methods in this 
table's second-to-last row. The table's final row further 
demonstrates that, at 95% confidence interval, the 
Friedman rank test of FSGC performs noticeably better 
than other state-of-the-art techniques indicated by the 

symbol √. Additionaly, f-score is also computer to get a 
better insight of FSGC shown in Table 3. 
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Table 2: Accuracy (SVM) comparison with state-of-the-art methods. Bold face results indicate an overall win, while (*) and (◦) indicate a significant win or 

loss related to that approach. 

Dataset My method FAST JC DSbM_BE MRMD rMRMR 

Iris 0.940(2) 0.880(1)* 0.913(2) 0.927(2) 0.953(2) 0.933(2) 

Appendicitis 0.869(1) 0.869(1) 0.850(4) 0.800(2) 0.750(1)* 0.800(1)* 

Ecoli 0.970(3) 0.967(2) 0.944(5)* 0.947(3) 0.941(3)* 0.944(3)* 

Pima 0.744(5) 0.741(2) 0.736(8) 0.745(5) 0.649(5)* 0.722(5) 

Glass 0.528(3) 0.444(2)* 0.517(7) 0.509(4) 0.443(3)* 0.509(3) 

Saheart 0.721(5) 0.654(1) 0.717(9) 0.711(5) 0.730(5) 0.717(5) 

Heart 0.833(9) 0.800(4) 0.811(10) 0.793(6) 0.826(9) 0.830(9) 

Cleveland 0.613(6) 0.589(4) 0.534(13)* 0.538(4)* 0.553(6)* 0.522(6)* 

Marketing 0.32(10) 0.263(1)* 0.313(10) 0.305(4)* 0.316(10) 0.319(10) 

Vehicle 0.749(6) 0.749(1) 0.744(16)* 0.744(2)* 0.744(6)* 0.744(6)* 

Hepatitis 0.850(4) 0.85(5) 0.822(18) 0.833(4) 0.811(4) 0.811(4) 

Waveform 0.847(19) 0.701(6)* 0.808(13)* 0.653(3)* 0.854(19) 0.84(19) 

Thyroid 0.932(8) 0.932(6) 0.929(18)* 0.925(4)* 0.933(8) 0.931(8) 

Parkinsons 0.845(12) 0.850(5) 0.845(14) 0.815(11) 0.81(12) 0.84(12) 

Steel 0.709(22) 0.563(7)* 0.696(20) 0.66(13)* 0.679(22)* 0.688(22) 

Dermatology 0.964(32) 0.762(8)* 0.953(22) 0.96(30) 0.97(32) 0.955(32) 

Spectfheart 0.79(10) 0.802(7) 0.743(31)* 0.796(15) 0.786(10) 0.786(10) 

Sonar 0.741(6) 0.707(13) 0.727(60) 0.764(15) 0.645(6)* 0.741(6) 

Coil2000 0.94(39) 0.94(17) 0.940(85)* 0.940(6)* 0.94(39)* 0.94(39)* 

Madelon 0.599(11) 0.566(60)* 0.543(500)* 0.613(11) 0.552(11)* 0.578(11) 

W/T/L - 13/5/2 18/2/0 15/1/4 14/1/5 18/2/0 

Sig. W/L - 7/0 8/0 7/0 10/0 5/0 

Avg. Rank 1.83 3.68 4.08 3.80 3.85 3.78 

F-Rank Test - √ √ √ √ √ 
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Table 3: F-score (SVM) comparison with state-of-the-art methods. Bold face results indicate an overall win, while (*) and (◦) indicate a significant win or loss 

related to that approach. 

Dataset My method FAST JC DSbM_BE MRMD rMRMR 

Iris 0.940(2) 0.875(1)* 0.919(2) 0.936(2) 0.958(2) 0.939(2) 

Appendicitis 0.854(1) 0.854(1) 0.785(4) 0.692(2)* 0.429(1)* 0.688(1)* 

Ecoli 0.966(3) 0.963(2) 0.712(5)* 0.752(3)* 0.485(3)* 0.692(3)* 

Pima 0.741(5) 0.722(2) 0.706(8)* 0.718(5) 0.500(5)* 0.690(5)* 

Glass 0.484(3) 0.391(2)* 0.396(7)* 0.347(4)* 0.255(3)* 0.386(3)* 

Saheart 0.714(5) 0.566(1)* 0.671(9) 0.668(5) 0.684(5) 0.670(5) 

Heart 0.833(9) 0.799(4) 0.81(10) 0.792(6) 0.824(9) 0.830(9) 

Cleveland 0.569(6) 0.552(4) 0.303(13)* 0.265(4)* 0.281(6)* 0.291(6)* 

Marketing 0.233(10) 0.156(1)* 0.207(10)* 0.184(4)* 0.195(10)* 0.214(10)* 

Vehicle 0.642(6) 0.642(1) 0.427(16)* 0.427(2)* 0.427(6)* 0.427(6)* 

Hepatitis 0.836(4) 0.836(5) 0.704(18) 0.738(4) 0.604(4)* 0.659(4)* 

Waveform 0.846(19) 0.694(6)* 0.808(13)* 0.649(3)* 0.854(19) 0.84(19) 

Thyroid 0.903(8) 0.903(6) 0.446(18)* 0.320(4)* 0.526(8)* 0.504(8)* 

Parkinsons 0.835(12) 0.851(5) 0.772(14) 0.731(11)* 0.691(12)* 0.766(12) 

Steel 0.705(22) 0.532(7)* 0.704(20) 0.681(13) 0.615(22)* 0.655(22)* 

Dermatology 0.964(32) 0.712(8)* 0.948(22) 0.96(30) 0.968(32) 0.951(32) 

Spectfheart 0.755(10) 0.758(7) 0.592(31)* 0.637(15)* 0.44(10)* 0.537(10)* 

Sonar 0.737(6) 0.696(13) 0.727(60) 0.77(15) 0.646(6)* 0.747(6) 

Coil2000 0.911(39) 0.911(17) 0.484(85)* 0.485(6)* 0.485(39)* 0.484(39)* 

Madelon 0.598(11) 0.566(60)* 0.544(500)* 0.613(11) 0.552(11)* 0.579(11) 

W/T/L - 13/5/2 20/0/0 18/0/2 17/0/3 19/0/1 

Sig. W/L - 8/0 11/0 11/0 15/0 12/0 

Avg. Rank 1.53 3.38 3.90 4.00 4.30 3.90 

F-Rank Test - √ √ √ √ √ 

Network Intrusion Detection Datasets Result and 
Discussion: 

This section discusses the result of IDSs data in a 
more detailed way. From Table 1, it can be seen that 
NSL-KDD dataset is a multi-class dataset. It contains 
five class labels which are Normal, DoS, R2L, Probe 
and U2R discussed in [44]. We have created two 
versions of FSGC, which we will refer to as NSL-KDD 
(B) and NSL-KDD (M), in order to gain a better 
understanding of FSGCs application to this dataset. 

NSL-KDD (B) will have two (Binary) classes as target 
labels (Normal, Attack) where all attack traffics will be 
treated as Attack classes, with the exception of  
Normal traffic flows while NSL-KDD (M) will have all 
the five classes. 

Results from FSGC and all other approaches on 
IDS datasets are summarized in Table 4 and 5. From 
these two tables, we can observe that FSGC performs 
better than all other comparative approaches when it 
comes to recognizing each single class in a multi-class 
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dataset or solving a binary class problem, as 
demonstrated by the accuracy and F-score results. 
Binary and multiclass results are examined in the 
following sections to provide a clearer picture of the 
IDS datasets outcomes. 

 

 

 

 

Table 4: Overall Accuracy result using Decision Tree on Network Intrusion Detection Dataset 

Dataset My Method FAST JC DSbM_BE rMRMR Nkiama et al. 

AWID 0.9966(21) 0.9638(12) 0.9925(41) 0.7575(3) 0.9890 0.9341(8) 

NSL-KDD (B) 0.9757(32) 0.8686(5) 0.9651(32) 0.8297(6) 0.9679 0.8418(4) 

NSL-KDD (M) 0.9765(34) 0.8531(8) 0.9716(31) 0.7981(10) 0.9743 0.7749(4) 

Table 5: Overall F-score result using Decision Tree on Network Intrusion Detection Dataset 

Dataset My Method FAST JC DSbM_BE rMRMR Nkiama et al. 

AWID 0.9966 0.9622 0.9737 0.7898 0.9891 0.9116 

NSL-KDD (B) 0.9757 0.867 0.9653 0.8468 0.968 0.8416 

NSL-KDD (M) 0.9762 0.8429 0.8764 0.5569 0.8836 0.7718 

 

 

1) Binary-class Dataset 

Figure 3 and 4 presents the accuracy and F-score 
results of AWID binary class (Normal and Attack) 
dataset's result respectively. From it, we can notice 
that while FSGC and other approaches are quite equal 
in regular traffic analysis, FSGC performs significantly 
better than all other methods with the exception of the 
rMRMR method in attack class data classification. This 

is due to the fact that rMRMR can also record feature 
interaction information similar to ours. Moreover, when 
FSGC is applied to the NSL-KDD (B) dataset, the 
accuracy and F-score results are fairly comparable 
shown in Figure. 5 and 6 accordingly. This was made 
possible by choosing the most pertinent and 
complementary feature set, which aided in capturing 
the feature interaction information from the cluster 
formation by FSGC. 

  

 

Figure 3: Class wise accuracy FSGC and other state-of-the-art methods 

on AWID dataset. 

 

Figure 4: Class wise F-score of FSGC and other state-of-the-

art methods on AWID dataset. 
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2) Multi-class Dataset 

To observe how well FSGC handles multi-class IDS 
datasets, it is additionally applied to the NSL-KDD (M) 
dataset.  We can observe from the accuracy 
comparison of the class results shown in Figure 7 that 
the FSGC performs more effectively or comparably to 
other comparative ones when it comes to classifying 
distinct classes.  Additionally, in order to obtain a 
better understanding of the results displayed in Figure 
8, we have also computed the F-scores of these 
approaches. Apart from these results, to observe the 
various class identification capabilities of our proposed 
FSGC approach, we present the confusion matrix 
result displayed in Table 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Class wise accuracy of FSGC and other state-of-the-art 

methods on NSL-KDD (B). 

Figure 6: Class wise F-score of FSGC and other state-of-the-art methods 

on NSL-KDD (B). 

 

Figure 7: Class wise accuracy of FSGC and other comparative methods on 

NSL-KDD (M). 

 

Figure 8: Class wise F-score of FSGC and other comparative methods on 

NSL-KDD (M). 
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Table 6: Confusion Matrix of NSL-KDD (M) 

 
Normal Dos R2L Probe U2R 

Normal 75909 328 453 338 26 

Dos 955 52414 5 11 0 

R2L 911 3 2822 5 8 

Probe 276 25 5 13722 49 

U2R 69 0 19 4 160 

 

 

V. CONCLUSION 

The work Feature Selection using Graph based 
Clustering (FSGC) is presented in this paper. To 
obtain the candidate feature set, it first eliminates the 
features that are not relevant.  This set is used to 
create a fully connected graph with symmetric 
uncertainty values serving as the graph's edges and 
features acting as its nodes. The Minimum Spanning 
Tree is then built using Kruskal's algorithm. Clusters 
are subsequently formed from it in a way that groups 
similar features together with complementary 
information. JBMI is then performed to each cluster to 
capture the most crucial and complementary 
information provided by the features in order to 
produce the final feature set. The performance of the 
FSGC is examined using twenty publicly available 
benchmark datasets from various fields. The findings 
demonstrate that FSGC performs better than other 
state-of-the-art techniques in the majority of instances, 
both in terms of accuracy and F-scores. Furthermore, 
it is applied on network intrusion detection system 
datasets, demonstrating encouraging results in 
distinguishing abnormal traffic from regular traffic in 
both binary and multi-class datasets. 
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