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Abstract— The continuous growth in wireless 
communication due to its advances in the provision of 
value-added services and ease of deployment as well as 
the rapid development of electronic and electrical 
devices, have given rise to an increase in the level of 
electromagnetic radiation making it appropriate to look 
at ways to reduce electromagnetic interference on the 
gadgets and to ensure electromagnetic compatibility to 
the tolerance level of the users and the environment. 
This demand for protection has increased, especially as 
the apertures required to provide ventilation and 
connectivity are themselves sources of leakage.  This 
study empirically investigated the impact of apertures 
on electromagnetic shielding effectiveness. 
Measurements carried out at 730 MHz revealed that a 
single aperture induced resonant coupling, degrading 
shielding by 10.43 dB and reducing shielding efficiency 
from 85.1% to 40.7%. An empirically deduced power-
law model was developed to predict performance drop 
with additional apertures, and with scaling laws 
projected that degradation would exceed 57,000 dB at 
300 GHz, exposing a fundamental shielding crisis for 
high-frequency and future terahertz communication 
systems. The results mandate a paradigm shift in 
enclosure design, which will prioritise aperture 
minimisation and the use of circular apertures. 
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Effectiveness, Aperture Leakage, Electromagnetic 
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I. INTRODUCTION 

The escalating density of electronic devices and wireless 
systems has created an electromagnetic environment where 
interference is not merely an inconvenience, but a critical 
risk. Electromagnetic shielding serves as the first line of 
defence, yet the very apertures required for functionalities 
like ventilation, connectivity, and visibility also provide 
avenues for electromagnetic interference (EMI) leakages. 
This electromagnetic interference on sensitive electronic 
devices and electrical systems, as well as the need to protect 
humans and animals from excessive radiation as the 

evolution of radio-wave technologies continues to grow, due 
to its incontestable contribution to the improvement of the 
standard and ease of living of the people, has placed 
electromagnetic shielding as an important research area for 
decades. Our daily living looks impossible without mobile 
phones, laptops, computers, avionics, video games, 
industrial controls, navigation, indoor positioning systems, 
and tablets. These devices and applications require network 
coverage like Wi-Fi, LTE, WIMAX, or 5G to function, thus 
resulting in more exposure to radio frequency signals of 
dispersed electromagnetic field strengths. With the advent of 
the Internet of Things (IoT), more and more devices in our 
homes will join the electromagnetic energy radiation group, 
again increasing the effect of radiation. 
 
Electromagnetic shielding effectiveness (SE) quantifies how 
well an enclosure can attenuate electromagnetic fields that 
incident on it. SE depends on factors such as material 
properties, thickness, aperture presence, shape, size, 
position, and frequency [1] and [2]. In line with this 
developmental jeopardy, ideas on ways to measure the 
effectiveness of electromagnetic shielding enclosures have 
been proposed for different types of materials [2], [3] and 
[4], and many materials have been tested for suitability and 
effectiveness for deployment as enclosures [5], [6] and [7] . 
Apart from the material’s effectiveness, researchers are 
investigating the effects of apertures on enclosures and 
possible designs that will reduce leakage of electromagnetic 
waves through ventilation holes, signal cable lines, and 
power supply lines [8], [9] and [10]. It is in line with this 
importance that this work investigates the effectiveness of 
electromagnetic shields with and without holes and 
extrapolates the outcome of multiple holes and shapes at 
some important frequencies. 

 
I. THEORETICAL FRAMEWORK 

In today’s world, where electronic devices and wireless 
systems are ubiquitous, managing EMI and ensuring 
Electromagnetic Compatibility (EMC) has become an 
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Table 1: Measurement Results 
Measurement Condition Measured Power (dB) 

With no shield S11:-27.505 
S21:-25.648 
S12:-25.562 
S22:-22.992 

With a shield without holes S11:-21.472 
S21:-33.788 
S12:-33.766 
S22:-20.502 

With a one-hole shield  S11:-22.951 
S21:-27.937 
S12:-27.888 
S22:-22.284 

 
3.2 Quantification of Aperture-Induced Degradation. 
Electromagnetic shielding (ES) refers to the use of 
protective materials to shield electronic devices from 
electromagnetic interference from outside their enclosures as 
well as prevent their radiation from humans, animals and 
devices within their surroundings. Reference [1] defines the 
electromagnetic shielding effectiveness (ESE) of a material 
as the ratio of the received signal without the shield to the 
received signal with the shield in place, as shown in (1) 
developed from the Martin Paul Robinson transmission line 
model [19].  
 

𝐸𝑆𝐸 ൌ 20. 𝑙𝑜𝑔ଵ଴
|௏೚|

|௏ೞ|
𝑑𝐵    (1) 

 
Where |𝑉௢| is the magnitude of the received signal without 
the shield, and |𝑉௦| is the magnitude of the received signal 
with the shield in place between the transmitting and the 
receiving antennas, measured at the same distance. In terms 
of power, the equation can be presented as in (2).  
  

𝐸𝑆𝐸 ൌ 10𝑙𝑜𝑔ଵ଴
௉೚

௉ೞ
𝑑𝐵   (2) 

  
  Where 𝑃௢  represents the measured power at the receiver 
without the shield, and 𝑃௦  is the power measured by the 
same receiver at the same distance with the shield in place. 
ESE, therefore, considers the signal attenuation as a result 
of the shielding, and the higher the loss, the more effective 
the shielding.  
   
Reference [20] stated that ESE can be described as a sum of 
three losses: reflection losses, absorption losses and re-
reflected losses (internal re-reflections of the absorbed wave 
within the shielding material) caused by the molecular 
structure of the material, although the internal re-reflections 
were said to only occur at very low frequencies [21]. In [22], 
the authors used scattering parameters of a two-port network 
measured from the antennas using a network analyser to 

define equations for the reflection losses and the absorption 
losses as given in  (3) and (4), respectively. 

𝐸𝑆𝐸ோ௅ ൌ 10. 𝑙𝑜𝑔 ൤1 െ 10
ೄభభ
భబ ൨  (3) 

 

𝐸𝑆𝐸஺௅ ൌ 10. 𝑙𝑜𝑔 ቈ
ଵ଴

ೄభభ
భబ

ଵିଵ଴
ೄభభ
భబ

቉  (4) 

 
Where 𝐸𝑆𝐸ோ௅ stands for the reflection loss and 𝐸𝑆𝐸஺௅ is for 
the absorption loss. 𝑆ଵଵ, and 𝑆ଶଵ are the input port reflection 
coefficient and the forward voltage gain, respectively. In 
(IEEE, 1998), the shielding effectiveness was calculated 
using (5). 
 

𝑆𝐸 ൌ 20𝑙𝑜𝑔ଵ଴ ቂ
ௌమభሺ௡௢ ௦௛௜௘௟ௗሻ

ௌమభሺ௪௜௧௛ ௦௛௜௘௟ௗሻ
ቃ  (5) 

 
Where 𝑆ଶଵ  is the forward transmission coefficient gotten 
from the measurement. This method was deployed in this 
work. Another way to evaluate shielding effectiveness is in 
the determination of the shielding efficiency. Shielding 
efficiency is defined as the fraction of incident power 
blocked by the shield. It can be expressed in (6) [23]. 
 

𝜂 ൌ ቀ1 െ
௉೟ೝೌ೙ೞ೘೔೟೟೐೏

௉೔೙೎೔೏೐೙೟
ቁΧ 100%   (6) 

 
Where: 
𝑃௧௥௔௡௦௠௜௧௧௘ௗ  is the power transmitted through the shield, 
given as  
𝑃௧௥௔௡௦௠௜௧௧௘ௗ ൌ |𝑆ଶଵ|ଶ. 𝑃௜௡௖௜ௗ௘௡௧  
𝑃௧௥௔௡௦௠௜௧௧௘ௗ is the incident power 
Substituting the parameters, the efficiency can therefore be 
deduced as (7). 
 

𝜂 ൌ ሺ1 െ |𝑆ଶଵ|ଶሻ ൈ 100 %       (7) 
 
Or (8) 

𝜂 ൌ ቀ1 െ ቂ
ௌమభሺ௡௢ ௦௛௜௘௟ௗሻ

ௌమభሺ௪௜௧௛ ௦௛௜௘௟ௗሻ
ቃቁΧ 100%    (8) 

 
(8) can be further manipulated into  (9). 
 

𝜂 ൌ ൬1 െ 10
ೄಶ
భబ൰ 𝑥100    (9) 

 
3.3 Predictive Modelling for Multiple Rectangular 
Apertures 
Power-law extrapolation is a method used to estimate the 
value of a variable at a larger scale or longer time, based on 
its behaviour at a smaller scale or shorter time, assuming the 
relationship between the two follows a power law. This law 
was deployed here to determine the effect of apertures on SE 
as the number of apertures increases. The non-linear 
degradation of SE with an increasing number of apertures 
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( 𝑁 ) is as shown in (10) using the power-law model 
grounded in the established principle that the cumulative 
leakage from an aperture array does not follow a linear 
relationship, a concept introduced in [24]. 

𝑆𝐸ሺ𝑁ሻ ൌ 𝑆𝐸଴ െ 𝑘. 𝑁∝   (10) 
Where: 
𝑆𝐸ሺ𝑁ሻ is the shielding effectiveness with 𝑁 apertures in 𝑑𝐵. 
𝑆𝐸଴ is the shielding effectiveness with no aperture.  
𝑁 is the number of apertures 
𝑘 is the degradation coefficient (𝑑𝐵/ℎ𝑜𝑙𝑒∝) 
∝ is the power law exponent (established at 1.5 in [24]. 
Using the established non-linear relationship exponent since 
apertures can couple with each other and create resonant 
modes within the enclosure, leading to what is termed as 
cooperative degradation, 𝑘  will be determined from the 
measured value. The aperture array degradation model was 
used to extrapolate the effect of aperture as the number 
increases.  
 
3.3.1 Theoretical Model for Shape-dependent Scaling  
From Bethe's theory [18], which exposed that an aperture 
doesn't just allow waves through a hole, but it acts as a 
coupled dipole antenna. The amount of energy it couples is 
determined by its polarisation. Different shapes have 
different polarisabilities, even if they have the same area. 
For instance, a long, thin slot may be a more efficient 
antenna for a specific polarisation than a circular hole. From 
[8], degradation in SE as a result of shape can be deduced 
using (11). Table 2 shows the established shape factors 𝐶௦. 

Δ𝑆𝐸௦௛௔௣௘ ൌ 𝐶௦ ൅ Δ𝑆𝐸஼௜௥௖௨௟௔௥    (11) 

This work deployed a shield with a rectangular aperture of 
2:1 aspect ratio for the measurement [25]. Since the 
polarisability (and hence leakage) for a circle is known and 
normalised to 1, we can find the ratio for a rectangle. 
Studies show that this ratio can be accurately approximated 
for a slot as (12) [8]. 

𝐶௦ ൎ
ସ

ଷగ
. ሺ𝐴. 𝑅ሻ     (12) 

Where 𝐶௦ is the shape factor and ሺ𝐴. 𝑅ሻ is the aspect ratio 

defined as the length divided by the width (𝐴𝑅 ൌ
௅௘௡௚௧௛

ௐ௜ௗ௧௛
) of 

the rectangular shape, and it is an important geometric 
factor in determining an aperture's polarisability and its 
energy leakage. Generally, shape factor (Cs) is 
approximately equal to the aspect ratio (AR), [8] and [24] 
for the worst-case polarisation.  Deducting from [10], the 
SE relates to the 𝐴𝑅  as in (13); 

 Δ𝑆𝐸 ∝ ሺ𝐴𝑅ሻଶ    (13) 
Table 2 presents the summary of derived shape factors.  

   
 
 
 
 
 
 
 
 

Table 2: Shape factors Summary 
Aperture Shape Aspect Ratio 

(L/W) 
Shape Factor 

(Cs) 
Theoretical Basis 

Circular 1:1 1.0  Bethe's Theory (Basic), normalised to 1. 
Square 1:1 ~1.1 Higher electric field concentration of square corners 

Rectangular Slot 2:1 ~1.8 Polarisability ∝∝ (Aspect Ratio) 
Rectangular Slot 5:1 ~3.0 Polarizability ∝∝ (Aspect Ratio) 
Rectangular Slot 10:1 ~5.0 Polarizability ∝∝ (Aspect Ratio) 

 
3.5 Theoretical Model for Frequency-dependent Scaling  
The measured degradation in SE at 730 MHz was 
extrapolated across a broad frequency spectrum to assess the 
vulnerability of shielding enclosures to aperture leakage in 
modern high-frequency applications. This extrapolation was 
based on the fundamental physical laws governing 
electromagnetic diffraction through small apertures. The 
scaling relationship is derived directly from Bethe's theory 
of diffraction [18], which established that the power 
leakage 𝑃௣௘௔௞ through a small aperture is proportional to the 

square of the frequency f for a fixed aperture size as given in 
(14): 

𝑃௣௘௔௞ ∝ ቀ
஺

ఒమቁ ∝ 𝐴. 𝑓ଶ  (14) 

where A is the area of the aperture and 𝜆 ൌ
஼

௙
 is the 

wavelength. 
The degradation in SE caused by the aperture (Δ𝑆𝐸஺௣௘௥௧௨௥௘ሻ 

is defined as the difference between the SE of the intact 
shield and the SE of the shield with the aperture. This is 
calculated from the measured transmission coefficients 
using (15) [26] and [27]; 

Δ𝑆𝐸஺௣௘௥௧௨௥௘ ൌ 𝑆𝐸ௐ௜௧௛௢௨௧ ஺௣௘௥௧௨௥௘ െ 𝑆𝐸௪௜௧௛ ௔௣௘௥௧௨௥௘  (15) 

This can be represented as (16). 

Δ𝑆𝐸஺௣௘௥௧௨௥௘ ൌ 20𝑙𝑜𝑔ଵ଴ ൬
ௌమభ,ೢ೔೟೓ ೌ೛೐ೝ೟ೠೝ೐

ௌమభ,ೢ೔೟೓೚ೠ೟ ೌ೛೐ೝ೟ೠೝ೐
൰   (16) 

And since the leaked power 𝑃௟௘௔௞ ∝ |𝑆ଶଵ|ଶ, then it follows 
to express the change in SE as proportional to (17).  

Δ𝑆𝐸஺௣௘௥௧௨௥௘ ൌ 10𝑙𝑜𝑔ଵ଴ ൬
௉೗೐ೌೖ,ሺೌ೛೐ೝ೟ೠೝ೐ሻ

௉೗೐ೌೖ,ሺ೙೚ ೌ೛೐ೝ೟ೠೝ೐ሻ
൰  (17) 
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Alternatively, (17) can be resolved for a measured 
experiment like ours to (18). This is taking into 
consideration the power law and the transition from no 
aperture to one aperture. 

Δ𝑆𝐸஺௣௘௥௧௨௥௘ ൌ 10𝑙𝑜𝑔ଵ଴ ൬
௉೗೐ೌೖ,.௙

௉೗೐ೌೖ .௙ೝ೐೑
൰ ൌ 20𝑙𝑜𝑔ଵ଴ ൬

௙

௙ೝ೐೑
൰  (18) 

So the total SE prediction at any frequency 𝑓 can be given 
by (19); 

𝑆𝐸ሺ𝑓ሻ ൌ 𝑆𝐸଴ െ ∆𝑆𝐸௠௘௔௦௨௥௘ௗ. ൬
௙

௙ೝ೐೑.
൰

ଶ

,  (19) 

where, 
𝑓௥௘௙ is the measurement frequency of 730 MHz. 

Δ𝑆𝐸஺௣௘௥௧௨௥௘ is the degradation measured at 𝑓௥௘௙ using (16). 

Valued at 10.4 dB. 
 𝑆𝐸଴is the baseline SE of enclosure without hole, measured 
at 𝑓௥௘௙. Valued at 8.14 dB. (See Table 3). The outcome of 

the experiment and the calculated results are presented in 
Section 4.  

 
 

4. RESULTS AND DISCUSSION 
From the S-parameters for the respective test conditions 
presented in Table 1, the shield without a hole offered better 
attenuation of the signal than the one with a hole. Although 
this is expected from common sense, the SE and the number 
of holes do not obey a linear relationship, as seen using (5). 
The ESE and its efficiencies were calculated for all the 
conditions, and the calculated results are presented in Table 
4, while Figure 3 shows the sample image of the simulated 
results and the measurement outputs 
 
 
4.1. Deduced Aperture-Induced Degradation 

Table 3 presents the calculated SE and Efficiency using (5) 
and (8), derived from the measured S-parameters at 730 
MHz. 

 
Table 3: Measured S-parameters and derived metrics 

Configuration  𝑺𝟐𝟏(dB) 𝑺𝟏𝟏 (dB) SE (dB) Efficiency, η  (%) 

No Shield (Baseline) -25.65 -27.51 0.00 0.0 
Shield (0 Apertures) -33.79 -21.47 8.14 85.1 
Shield (1 Aperture) -27.94 -22.95 -2.29 40.7 

 
From the data presented in Table 3, the introduction of a 
single aperture catastrophically degrades shielding 
performance. The intact enclosure provided a shielding 
effectiveness (SE) of 8.14 dB, attenuating 85.1% of 
incident power. The introduction of one aperture reduced 
the SE by 10.43 dB, resulting in a negative SE of -2.29 dB 
and an efficiency drop to 40.7%. This indicates that the 

enclosure amplified the transmitted signal relative to the 
no-shield baseline, a phenomenon indicative of resonant 
coupling through the aperture [19]. Figure 2 shows the 
measured S-parameters at 730 MHz and the calculated 
shielding effectiveness as Figure 2 a and b.  
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