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Abstract—In this work, prediction of power output of
solar-powered, waterwheel-based pumped hydroelectric
storage  system using ANN model is presented. The
essence of this study is to use artificial neural network
(ANN) to characterize the nonlinear relationship
between the input features and power output of the
solar-powered, waterwheel-based pumped hydroelectric
storage (SPWWPHS) system. The following four
parameters are considered for their impact on the
SPWWPHS system power output; height (m), flow
(m3/s), tank discharge time (seconds) and rotational
speed (rad/s). The SPWWPHS was modeled and
simulated using ANSYS Mechanical software. The ANN
was trained over 500 epochs using four key input
parameters derived from the system’s experimental
dataset. Particularly, the results showed that the output
power value ranges from 1500 W at the height of 15 m
to 1800 W at the height of 17.438 m. The results also
showed that the output power value ranges from 1500
W at flow rate of 0.00087260 m?3/s to 1800 W at flow rate
of 0.00087775 m?s. The output power also increased
linearly with power output from the Tank Discharge
Time until the 4400.8 seconds at which point the power
output begins to drop. In all, the ANN model gave good
performance for both the training and validation cases.
With the ANN model, the designer of the solar-powered,
waterwheel-based pumped hydroelectric storage system
can effectively predict the expected power output for
any combination of the four input parameters.
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1. Introduction
Solar-powered, waterwheel-based pumped

hydroelectric storage is used to generate electrical
energy from solar power as the primary source
and the waterwheel tribune as the hydro power
segment to convert the pumped water to electrical

energy [1,2,3]. Generally, solar hydroelectric

power system is expensive to set up and proper
understanding of the system using a model is key
to minimizing wastage and enhance efficiency of
the system [4,5,6]. Again, in practice, such
systems are modelled to enable parametric
analysis of the system under various conditions
[7.8.9]. In such way, the system components
dimensions are carefully selected based on the
model output.

In some cases, analytical modelling is
used, in another case simulation software is used
to model the system [10,11,12]. Yet in another
case, data driven model can be used to study a
system, especially for application in the design of
enhanced version of the existing system or the
application of the data driven model in the design
of new systems [13,14]. Specifically, in this
study, the data driven approach is used. Notably,
some key data records acquired from some
monitoring sensors-based monitoring mechanism
are used to evaluate the effect of selected
parameters on the power output of a case study.
Particularly, artificial neural network model is
trained and used to predict the power output of

the solar-powered, waterwheel-based pumped
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hydroelectric storage system [15,16,17]. The
study will assist in the maintenance and
enhancement of the performance of the system by
identifying the key components parameters
settings that will give the optimal power output.

2. Methodology

The essence of this study is to use artificial
neural network (ANN) to characterize the
nonlinear relationship between the input features
and power output of the solar-powered,
waterwheel-based pumped hydroelectric storage
(SPWWPHS) system. The following four
parameters are considered for their impact on the
SPWWPHS system power output; height (m),
flow (m?/s), tank discharge time (seconds) and
rotational speed (rad/s). The SPWWPHS was
modeled and simulated using ANSYS
Mechanical software.

2.1 Dataset Description

The dataset was originally derived from
computational simulations of a solar-powered,
waterwheel-based pumped hydroelectric storage
(PHES) system, wvalidated using ANSYS
Mechanical software. The dataset includes the
four input variables mentioned above and a single
output variable, the power output in watts. Each
record in the dataset includes values for the
following input variables: height (m), flow (m?/s),
tank discharge time (seconds) and rotational
speed (rad/s). The corresponding output variable
is the power output and error measurements
expressed in terms of Mean Absolute Percentage
Error (MAPE), Mean Squared Error (MSE) and
Mean Absolute Error (MAE). The simulations in

ANSYS Mechanical software were automated to

ensure consistency and broad coverage of various
operational scenarios, resulting in a high-quality

training dataset.

1. Data Analysis: Initial analysis was performed
using Python's Pandas library. The data was
consolidated into a structured format and
visualized using box plots for each input and
output variable to assess distributions, identify
outliers, and evaluate value ranges. To enhance
visual interpretability, data was normalized using
‘StandardScaler’, and the box plots were
generated using the Seaborn library

2. Data Pre-processing: Data preprocessing
conducted included:

i.  Conversion of all input and output
columns to numeric types

ii. Dropping rows containing non-numeric
or missing values

iii. Normalization of features using
*StandardScaler

iv. Splitting of the data into training and
testing sets using an 80/20 ratio with

“train_test_split’ from Scikit-learn

3.2.7 The Artificial Neural Network (ANN)
Model Architecture and Configuration

The artificial neural network (ANN) was

developed to approximate the nonlinear

Www.imjst.org

IMJSTP29121222

8648



International Multilingual Journal of Science and Technology (IMJST)
ISSN: 2528-9810
Vol. 9 Issue 6, June - 2024

relationship between the input features and power
output using the function:

y="f(x,0) forx € R* (1
Where: Input vector [Height (m), Flow (m?3/s), Tank
Discharge Time (secs), Rotational Speed (rad/s),] ¥ :
Predicted power output, errors and 6: Learnable
parameters (weights and biases)

The ANN architecture:
The ANN model was implemented using
TensorFlow's “Sequential’ API. The ANN
architecture (as shown in Figure 1) is composed
of:
1. Input Layer: 4 input nodes (one for
each feature)
11. Hidden Layer 1: 64 neurons,
ReLU activation

1il. Hidden Layer 2: 32 neurons,

ReL.U activation

1v. Output Layer: 1 neuron
(regression output, linear
activation)

The model's architecture was visualized using
‘networkx" as shown in Figure 1.
The ANN Model configuration:
The ANN Model configuration is as follows;
i.  Optimizer: RMSprop
ii. Loss Function: Mean Squared Error

(MSE)

1ii. Evaluation Metrics: MAE, MSE, and
custom-defined MAPE
The ANN Model Training and Evaluation

The ANN model was trained over

a maximum of 500 epochs with a batch size
of 20. A validation split of 20% was used to
monitor generalization. Early stopping was
set at 20 epochs. Additionally, a custom
callback was defined to compute and monitor
Mean Absolute Percentage Error (MAPE)
during each epoch. Model performance
during training and validation was plotted

over time.

Input Layer (4 neurons)

» Hidden Layer !
(64 neurons)

S Hidden Layer 2
(32 neurons)

Output Layer (1 neurons)

Figure 1 Artificial Neural Network (ANN)
Model Architecture

The ANN Model Performance Metrics
The performance metrics used to assess the

ANN model are as follows;
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i. Mean Absolute Percentage Error
(MAPE)

The MAPE with respect to the actual (A)
and forecasted value (F,) is defined as;

_100% |Ac— Fy|
MAPE N t=1 (0.5 X (JAd + |Fe]) )

2)

Where number of observations is N.
ii. Mean Squared Error (MSE)

The MSE with respect to the actual value
(y:) and predicted value (¥,) is defined as;

1 A
MSE=—%Y; (ye — 997 3)
iii. Mean Absolute Error (MAE)

1 .
MAE = mean (Jei|) = ~ Ly ly — 9l )

Where e; = error between model prediction
and observed value.

3. Results and discussion

The boxplot for the five parameters are presented
in Figure 1 to Figure 6. Also, the graph of the power
output versus each of the four input parameters are
presented in Figure 7 to Figure 10. The trend line
analytical models fitted to the graphs in Figure 7 to
Figure 10 show that the power output is linearly
related to the height and flow rate whereas the power
output is related to the Tank Discharge Time and
Rotational Speed based on logarithmic expressions.

Power output = 123.05(Height) - 345.78 %)

Power output = 6E+07 (Flow Rate) - 49296 (6)

Power output = 12454 In (Tank Discharge Time) - 102726
(N

Power output = 378.08In(Rotational Speed) + 660.6  (8)

I Height (m)

15 16.5 16

16.5 17 17.5

Figure 2 The Boxplot for the dataset on Height of the tank

[ Flow (m%s)

873 874 8754

876y 877 878y

Figure 3 The Boxplot for the dataset on flow rate
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Figure 4 The Boxplot for the dataset on rotational speed of the hydro turbine
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Figure 5 The Boxplot for the dataset tank discharge time
[ Power Output (W)
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Figure 6 The Boxplot for the dataset on power output of the system
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Figure 7 The graph of power output versus height
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Figure 8 The graph of power output versus flow rate
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Figure 9 The graph of power output versus tank discharge time
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Figure 10 The graph of power output versus rotational speed of turbine
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The ANN was trained over 500 epochs
using four key input parameters derived from
the system’s experimental dataset.
Particularly, the results showed that the output
power value ranges from 1500 W at the
height of 15 m to 1800 W at the height of
17.438 m. The results also showed that the
output power value ranges from 1500 W at
the flow rate of 0.00087260 m?/s to 1800 W at
the flow rate of 0.00087775 m?/s. The output
power increased linearly with power output
from the Tank Discharge Time until the
4400.8 seconds at which point the power
output begins to drop.

It was observed that all three error metrics
declined significantly as training progressed,
reflecting effective model convergence. The
low MAPE value indicated high reliability in
predicting power output, while the MSE and
MAE suggested minimal deviation between
actual and predicted values. This level of

accuracy confirms that ANN tools can be

deployed to manage real-time optimization
and automated control of PHES systems,
especially under fluctuating renewable energy
inputs or changing hydraulic head conditions.
The error metrics (MAPE, MSE, and MAE)
obtained from the ANN model training and
validation process are presented in Figure 11
to Figure 13. Also, the results for the training
and validation MSE at epoch 1 and at epoch
500 are presented in Table 1. The results for
the training and validation MAE at epoch 1
and at epoch 500 are presented in Table 2
while results for the training and validation
MAPE at epoch 1 and at epoch 500 are
presented in Table 3. The results showed that
after 500 epochs, the MSE dropped by about
35.2 % for the training and 36.44% for the
validation set (as shown in Table 1). Also,
after 500 epochs the MAE dropped by about
20.3 % for the training and 20.62% for the
validation set (as shown in Table 2) and
similar results is obtained for the MAPE, (as
shown in Table 3).

le6 MSE vs. Epoch

MSE (W?)

— Training MSE
- Walidation MSE

o 100 200 300 400 500
Epoch

Figure 11 MSE Generated from ANN
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Table 2 The training and validation MSE at epoch 1 and at epoch 500.

. . Sy Difference between Percentage
Training Validation . . S . . .
MSE MSE training and validation difference in
MSE MSE
At El""“h 2631240.00 | 2980730.50 349490.50 13.28
At gg’o"“h 170387338 | 189466138 190788.00 11.20
Percentage
difference
ifferenc 35.24 36.44 2.09
(%)

Table 1 The training and validation MAE at epoch 1 and at epoch 500.

MAE vs. Epoch

—— — Training MAE
5 ——— Wwvalidation MAE
1600
1500 -
=
=
= 1400 +
1300 -
1200 -
o 100 200 300 400 500
Epoch
Figure 12: MAE Generated from ANN
Table 2 The training and validation MAE at epoch 1 and at epoch 500.
S Difference between training and Percentage difference in

Training MAE |  2hdation MAE validation MAE MAE

At Epoch 1 1619.98 1724.85 104.87 6.47

At Epoch 500 1291.02 1369.24 78.21 6.06

Percentage
difference in 20.31 20.62 0.42
MAE (%)
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MAPE vs. Epoch
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90 A
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Epoch
Figure 13: MAPE Generated from ANN
Table 3 The training and validation MAPE at epoch 1 and at epoch 500.
Training Validation Difference between training and Percentage difference in
MAPE MAPE validation MAPE MAPE
At Epoch 1 0.9999 0.9999 0.0000 0.0000
At Epoch 500 0.7942 0.7988 0.0046 0.5792
Percentage
difference in
MSE (%) 20.57 20.11 0.58

4. Conclusion
The prediction of the output power generated

by a solar-powered, waterwheel-based pumped
hydroelectric storage system is studied. The
artificial neural network (ANN) model is used
for the prediction. The study considered the
height (m), flow rate (m?%s), tank discharge time
(seconds) and rotational speed (rad/s) and
examined regression trend line expression for
relating each of the four parameters to the output

power. The results showed that the height and

flow rate are linearly related to the output power
whereas the tank discharge time (seconds) and
rotational speed (rad/s) have logarithmic
relationship with the output power. The
prediction performance of the ANN model is
evaluated using the Mean Absolute Percentage
Error (MAPE), Mean Squared Error (MSE) and
Mean Absolute Error (MAE). In all, the model
gave good performance for both the training and
validation cases. With the ANN model, the

designer of the solar-powered, waterwheel-based
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pumped hydroelectric

storage sSystem can

effectively predict the expected power output for

any combination of the four input parameters.
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