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Abstract—In this work, prediction of power output of 
solar-powered, waterwheel-based pumped hydroelectric 
storage   system using ANN model is presented. The 
essence of this study is to use artificial neural network 
(ANN) to characterize the nonlinear relationship 
between the input features and power output of the 
solar-powered, waterwheel-based pumped hydroelectric 
storage (SPWWPHS) system. The following four 
parameters are considered for their impact on the 
SPWWPHS system power output; height (m), flow 
(m³/s), tank discharge time (seconds) and rotational 
speed (rad/s). The SPWWPHS was modeled and 
simulated using ANSYS Mechanical software. The ANN 
was trained over 500 epochs using four key input 
parameters derived from the system’s experimental 
dataset. Particularly, the results showed that the output 
power value ranges from 1500 W at the height of 15 m 
to 1800 W at the height of 17.438 m. The results also 
showed that the output power value ranges from 1500 
W at flow rate of 0.00087260 m³/s to 1800 W at flow rate 
of 0.00087775 m³/s. The output power also increased 
linearly with power output from the Tank Discharge 
Time until the 4400.8 seconds at which point the power 
output begins to drop.  In all, the ANN model gave good 
performance for both the training and validation cases. 
With the ANN model, the designer of the solar-powered, 
waterwheel-based pumped hydroelectric storage system 
can effectively predict the expected power output for 
any combination of the four input parameters. 

Keywords— Solar Power, Waterwheel, ANSYS 
Mechanical Software, Pumped Hydroelectric Storage, 
Artificial Neural Network (ANN) 

 

1. Introduction 
Solar-powered, waterwheel-based pumped 

hydroelectric storage is used to generate electrical 

energy from solar power as the primary source 

and the waterwheel tribune as the hydro power 

segment to convert the pumped water to electrical 

energy [1,2,3]. Generally, solar hydroelectric 

power system is expensive to set up and proper 

understanding of the system using a model is key 

to minimizing wastage and enhance efficiency of 

the system [4,5,6]. Again, in practice, such 

systems are modelled to enable parametric 

analysis of the system under various conditions 

[7.8.9]. In such way, the system components 

dimensions are carefully selected based on the 

model output.  

In some cases, analytical modelling is 

used, in another case simulation software is used 

to model the system [10,11,12]. Yet in another 

case, data driven model can be used to study a 

system, especially for application in the design of 

enhanced version of the existing system or the 

application of the data driven model in the design 

of new systems [13,14]. Specifically, in this 

study, the data driven approach is used. Notably, 

some key data records acquired from some 

monitoring sensors-based monitoring mechanism 

are used to evaluate the effect of selected 

parameters on the power output of a case study. 

Particularly, artificial neural network model is 

trained and used to predict the power output of 

the solar-powered, waterwheel-based pumped 
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hydroelectric storage system [15,16,17]. The 

study will assist in the maintenance and 

enhancement of the performance of the system by 

identifying the key components parameters 

settings that will give the optimal power output. 

2. Methodology 
      The essence of this study is to use artificial 

neural network (ANN) to characterize the 

nonlinear relationship between the input features 

and power output of the solar-powered, 

waterwheel-based pumped hydroelectric storage 

(SPWWPHS) system. The following four 

parameters are considered for their impact on the 

SPWWPHS system power output; height (m), 

flow (m³/s), tank discharge time (seconds) and 

rotational speed (rad/s). The SPWWPHS was 

modeled and simulated using ANSYS 

Mechanical software.  

2.1 Dataset Description 

      The dataset was originally derived from 

computational simulations of a solar-powered, 

waterwheel-based pumped hydroelectric storage 

(PHES) system, validated using ANSYS 

Mechanical software. The dataset includes the 

four input variables mentioned above and a single 

output variable, the power output in watts. Each 

record in the dataset includes values for the 

following input variables: height (m), flow (m³/s), 

tank discharge time (seconds) and rotational 

speed (rad/s). The corresponding output variable 

is the power output and error measurements 

expressed in terms of Mean Absolute Percentage 

Error (MAPE), Mean Squared Error (MSE) and 

Mean Absolute Error (MAE). The simulations in 

ANSYS Mechanical software were automated to 

ensure consistency and broad coverage of various 

operational scenarios, resulting in a high-quality 

training dataset. 

1. Data Analysis:   Initial analysis was performed 

using Python's Pandas library. The data was 

consolidated into a structured format and 

visualized using box plots for each input and 

output variable to assess distributions, identify 

outliers, and evaluate value ranges. To enhance 

visual interpretability, data was normalized using 

`StandardScaler`, and the box plots were 

generated using the Seaborn library  

2. Data Pre-processing: Data preprocessing 

conducted included: 

i. Conversion of all input and output 

columns to numeric types 

ii. Dropping rows containing non-numeric 

or missing values 

iii. Normalization of features using 

`StandardScaler` 

iv. Splitting of the data into training and 

testing sets using an 80/20 ratio with 

`train_test_split` from Scikit-learn 

 

3.2.7 The Artificial Neural Network (ANN) 
Model Architecture and Configuration 

      The artificial neural network (ANN) was 

developed to approximate the nonlinear 
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Figure 7 The graph of power output versus height    

 
Figure 8 The graph of power output versus flow rate  

 

 
Figure 9 The graph of power output versus tank discharge time     

 

 
     Figure 10 The graph of power output versus rotational speed of turbine 

1800
1770

1740
1710

1680
1650

1620
1590

1560
1530

1500

y	=	6E+07x	‐ 49296
R²	=	0.9985

1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

0.000872 0.0008735 0.000875 0.0008765 0.000878

P
ow

er
	O
u
tp
u
t	(
W
)

Flow	(m³/s)

1800
1770

1740
1710

1680
1650

1620
1590

1560
1530

1500

y	=	12454ln(x)	‐ 102726
R²	=	0.9948

1400
1450
1500
1550
1600
1650
1700
1750
1800
1850

4300 4320 4340 4360 4380 4400 4420 4440

P
ow

er
	O
u
tp
u
t	
(W

)

Tank	Discharge	Time	(seconds)

1800
1770

1740
1710

1680
1650

1620
1590

1560
1530

1500

y	=	378.08ln(x)	+	660.6
R²	=	0.9911

1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

8 10 12 14 16 18 20 22

P
ow

er
	O
u
tp
u
t	(
W
)

Rotational	Speed	(rad/s)	



IMMJSTP2912122

 

The A

using four

the sy

Particularl

power va

height of 

17.438 m

output po

the flow r

the flow r

power inc

from the 

4400.8 se

output beg

It was

declined s

reflecting 

low MAP

predicting

MAE sug

actual an

accuracy 

22 

ANN was t

r key input 

ystem’s 

ly, the resul

alue ranges

15 m to 1

m. The resu

ower value 

ate of 0.000

rate of 0.00

creased line

Tank Dis

econds at 

gins to drop

 observed th

significantly

effective m

PE value ind

g power out

ggested min

nd predicted

confirms t

trained ove

parameters

experiment

lts showed t

s from 150

1800 W at 

lts also sho

ranges from

087260 m³/s

0087775 m³

early with 

scharge Ti

which poin

p.   

hat all three

y as trainin

model conv

dicated high

tput, while 

nimal devia

d values. T

that ANN 

w

er 500 epoc

s derived fro

tal datas

that the outp

00 W at t

the height 

owed that t

m 1500 W

s to 1800 W

/s. The outp

power outp

ime until t

nt the pow

e error metr

ng progress

vergence. T

h reliability

the MSE a

ation betwe

This level 

tools can 

Figure

Inte

www.imjst.or

chs 

om 

set. 

put 

the 

of 

the 

W at 

W at 

put 

put 

the 

wer 

rics 

sed, 

The 

y in 

and 

een 

of 

be 

e 11 MSE G

ernational Multi

rg 

deployed 

and auto

especially

inputs or 

The error

obtained 

validation

to Figure 

and valida

500 are p

the trainin

and at ep

while res

MAPE at

presented 

after 500 

35.2 % fo

validation

after 500 

20.3 % fo

validation

similar re

shown in 

Generated f

lingual Journal 

to manage

mated con

y under fluc

changing h

r metrics (M

from the A

n process ar

13.  Also, t

ation MSE 

presented in

ng and vali

poch 500 a

ults for the

t epoch 1 

in Table 3

epochs, the

for the train

n set (as sh

epochs the

for the train

n set (as s

sults is obt

Table 3). 

from ANN 

of Science and T

Vol. 9

e real-time

ntrol of PH

ctuating rene

hydraulic he

MAPE, MS

ANN mode

re presented

the results f

at epoch 1

n Table 1. T

idation MA

are presente

e training a

and at ep

. The result

e MSE drop

ning and 36

hown in Ta

e MAE drop

ning and 20

shown in 

tained for th

 

Technology (IMJ
ISSN: 2528-9

9 Issue 6, June - 2

8

e optimizat

HES system

ewable ener

ead conditio

SE, and MA

l training a

d in Figure 

for the train

 and at epo

The results 

AE at epoch

ed in Table

and validat

poch 500 

ts showed t

pped by ab

6.44% for 

able 1). Al

pped by ab

0.62% for 

Table 2) a

he MAPE, 

 

JST) 
9810 
2024 

653 

tion 

ms, 

rgy 

ons. 

AE) 

and 

11   

ning 

och 

for 

h 1 

e 2 

tion 

are 

that 

out 

the 

lso, 

out 

the 

and 

(as 



IM

At 

A

d

MJSTP2912122

Epoch 1 

At Epoch 500 
Percentage 

difference in 
MAE (%) 

22 

Table 2 T

  
At Epoch

1 
At Epoch

500 
Percentage
difference 

in MSE 
(%) 

Table 1 T

Table 2 T

Training
1619

1291

20.3

The trainin

Training
MSE  

h 
2631240.0

h 
1703873.3

e 

35.24 

The trainin

The trainin

g MAE 
Va

.98 

.02 

31 

w

ng and valid

g 
 

Validat
MSE

00 2980730

38 1894661

36.44

ng and valid

Figure 

ng and valid

alidation MAE

1724.85 

1369.24 

20.62 

Inte

www.imjst.or

 
dation MSE

tion 
E  

Diff
trainin

0.50 

1.38 

4 

dation MA

 12: MAE G
 

dation MA

AE 
Differen

ernational Multi

rg 

E at epoch 

ference betwe
ng and valida

MSE 

349490.50 

190788.00 

  

AE at epoch

Generated 

AE at epoch

nce between 
validation M

104.87

78.21

 

lingual Journal 

1 and at ep

een 
ation 

Per
diffe

1 and at ep

from ANN

1 and at ep

training and 
MAE 

of Science and T

Vol. 9

poch 500.  

rcentage 
ference in 
MSE 

13.28 

11.20 

2.09 

poch 500. 

N 

poch 500.  

Percenta

Technology (IMJ
ISSN: 2528-9

9 Issue 6, June - 2

8

 

age difference
MAE 
6.47 

6.06 

0.42 

JST) 
9810 
2024 

654 

e in 



IM

A

At 
P

di
M

by

hy

ar

fo

he

(s

ex

re

po

MJSTP2912122

  

At Epoch 1 

Epoch 500 
Percentage 
fference in 
MSE (%) 

The pred

y a solar-p

ydroelectric

rtificial neu

or the pred

eight (m), f

seconds) a

xamined re

elating each

ower. The 

22 

Table 
Training
MAPE 

0.9

0.7

20

4. Con
diction of th

powered, w

c storage s

ural networ

diction. Th

flow rate (m

and rotatio

egression tr

h of the four

results sho

F

3 The trai
g 
  

Va
M

9999 

7942 

0.57 

 
nclusion 

e output po

waterwheel-b

system is s

rk (ANN) m

he study c

m³/s), tank d

onal speed 

rend line e

r parameter

owed that th

w

Figure 13: 

ning and v
lidation 

MAPE  
0.9999 

0.7988 

20.11 

ower generat

based pump

studied.  T

model is us

onsidered t

discharge ti

(rad/s) a

expression 

s to the outp

he height a

Inte

www.imjst.or

MAPE Gen
 

alidation M
Differen

v

 

ated 

ped 

The 

sed 

the 

ime 

and 

for 

put 

and 

fl

w

ro

re

p

ev

E

M

g

v

d

ernational Multi

rg 

nerated fro

MAPE at ep
ce between tr

validation MA

  

low rate are

whereas the 

otational 

elationship 

rediction p

valuated us

Error (MAPE

Mean Absol

ave good p

alidation c

esigner of t

lingual Journal 

om ANN 

poch 1 and 
raining and 
APE 

0.000

0.004

e linearly re

tank disch

speed (rad

with the

performance

sing the Me

E), Mean S

lute Error (

erformance

cases. With

the solar-po

of Science and T

Vol. 9

at epoch 5
Percenta

00 

46 

elated to the

harge time 

ad/s) have

e output 

e of the A

ean Absolu

Squared Err

(MAE). In 

e for both th

h the ANN

owered, wat

Technology (IMJ
ISSN: 2528-9

9 Issue 6, June - 2

8

 

500. 
age differenc
MAPE 

0.0

0.5

0

e output pow

(seconds) a

e logarithm

power. T

ANN model

ute Percenta

ror (MSE) a

all, the mo

he training a

N model, 

erwheel-bas

JST) 
9810 
2024 

655 

e in 

0000 

792 

0.58 

wer 

and 

mic 

The 

l is 

age 

and 

odel 

and 

the 

sed 



International Multilingual Journal of Science and Technology (IMJST) 
ISSN: 2528-9810 

Vol. 9 Issue 6, June - 2024 

www.imjst.org 
IMJSTP29121222 8656 

pumped hydroelectric storage system can 

effectively predict the expected power output for 

any combination of the four input parameters.  
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