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Abstract— In this study, Artificial Neural 
Network (ANN) model for optimization of palm 
kernel oil yield extraction machine is presented. 
The ANNs model was employed in the 
optimization of the oil extracted from palm kernel 
using the dataset of a 10-ton palm kernel oil (PKO) 
extracting machine located in Akwa Ibom State as 
the case study. The input parameters in the case 
study dataset include the moisture content of the 
palm kernel, the shaft speed of the machine and 
the cone gap of the machine while the optimized 
PKO produced is the model output. The 5000 
records case study dataset was split into 75 % for 
model training and 25 % for the model validation. 
The feature importance result showed that the 
moisture content with average impact of 0.16 was 
the most important parameter when the ANNS 
model was used for predicting the PKO output of 
the extracting machine. Also, the maximum oil 
yield of 43.4 % was realized with shaft speed of18 
rpm, the cone gap of 1.5 mm and the moisture 
content of 8 %. This means that the operators of 
the machine should target the identified input 
parameters setting in order to realize the best oil 
yield in their plant. 

. 
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1. Introduction 

Nowadays, Artificial Intelligence (AI) has gained 
wide spread applications in diverse field (Bianchini, Müller 
and Pelletier, 2022; Sarker, 2021).  AI has become 
particularly useful in handling data drive solutions, 

especially those non-linear problems that result in high 
prediction errors when the conventional multiple nonlinear 
models are used (Rahmanifard and Gates, 2024; Zhao, 
2022).  

Remarkably, machine learning models which are 
artificial intelligence solutions are being increasingly used 
to tackle such optimization problems that are normally 
found in the industry (Nagy, Lăzăroiu and Valaskova, 
2023; Ahmed, Jeon and Piccialli, 2022; Bécue, Praça 
and Gama, 2021). Notably, in this work, the focus is on 
applying the Artificial Neural Network (ANN) model on 
the case study dataset of a 10-ton palm kernel oil (PKO) 
extracting machine to optimize the PKO extracted by the 
machine based on the machine settings and the palm kernel 
moisture content. In this regard, the ANN model which is 
one of the earliest intelligent models is employed to read in 
two machine setting parameters, namely the machine main 
shaft speed and the cone gap setting and also read in the 
palm kernel moisture content and then determine the 
optimal PKO yield (Agu  et al., 2023; Said et al., 2018; 
Adejugbe et al., 2017; Hashim, Tahiruddin and Asis, 
2012). The ANN model is trained with adequate data 
records obtained from the case study PKO extracting 
machine. The ideas presented in this work are essential for 
industrial applications regarding data-driven optimization 
problems. 

2. Methodology 
In this work Artificial Neural Networks (ANNs) 

model is employed in the optimization of the oil extracted 
from palm kernel using a case study 10-ton palm kernel oil 
(PKO) extracting machine (Iweka et al., 2024, Mohd 
Najib et al.,  2020; Tehlah, Kaewpradit and Mujtaba, 
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