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Abstract— In this paper, comparison of 
machine learning models for short-term 
forecasting of distribution station feeders load is 
presented. Specifically, load profile datasets from 
four different feeders in a power distribution 
station located in Akwa Ibom State Nigeria are 
used to train the two different machine learning 
models, namely, the recurrent neural 
network (RNN) model and the XGBoost model. 
Root mean square error is used as the metric for 
comparing the prediction performance of the two 
models. The model with better performance is 
then used for the feeder load forecasting. Four 
months hourly load profile datasets obtained for 
each of the four feeders are used in the study, 
with 70 % used as the training dataset while 30 % 
was used as the test dataset. The RNN model for 
each of the feeders was trained for 𝟓𝟎 epochs. On 
the other hand, for the XGboost, the tree threshold 
was set to 𝟓𝟎 and the learning rate was set to 
𝟎. 𝟎𝟎𝟏. The model prediction results show that the 
means square error (MSE) for the RNN model 
predictions are 𝟏. 𝟐𝟏, 𝟐. 𝟗𝟗, 𝟐. 𝟎𝟒  and 𝟐. 𝟐𝟖  for the 
Secretariat, AKA, Udo Udoma, and IBB datasets, 
respectively. On the other hand, for the XGBoost, 
the MSE values are 12.21, 113.19,86.21 and 119.18  
for Secretariat, AKA, Udo Udoma, and IBB 
datasets, respectively. Essentially, the RNN model 
performed much better than the XGBoost in all the 
datasets considered. Hence, the RNN model is 
used for the short-term (one month) forecasting of 
the feeder loads.  
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1. Introduction 
In recent years , machine learning models has 

been widely applied in diverse fields for predictions, and 
forecasting, as well as monitoring and control of intelligent 
or smart systems [1,2,3]. In the power industry, machine 
learning methods can also be applied for load modelling 
and forecasting [4,5,6,7]. This approach requires the use of 
rich load dataset to train the machine learning algorithm 
and also to validate the algorithm appropriateness based on 
certain performance metrics [8,9]. 

Notably, there are several machine learning 
methods, however, in this work only two of the methods are 
considered, namely,   the Recurrent Neural 
Network (RNN) model [10,11,12] and the XGBoost model 
[13,14]. The choice of the two models is based on some 
reviewed works which have shown good prediction 
performance in diverse applications [15,16,17,18]. As such, 
they are deemed to be suitable for the feeder load 
modelling, prediction and forecasting. Furthermore, the two 
methods are applied to the case study feeder load dataset 
and their prediction performance are measured using mean 
square error. The model that has better prediction 
performance is then used for the load forecasting.  
      
    2. Methodology 

The major focus in this work is to use load profile 
datasets from four different feeders in a power distribution 
station to train two different machine learning models, 
namely, the recurrent neural network model and the 
XGBoost model. Furthermore, the two models are used to 
predict the feeder load profile and also to carryout short 
term forecasting of the feeder load profile. The data 
processing and system model applicable to the two machine 
learning models are presented along with the detailed 
algorithm for the RNN model which performed better than 
the XGboost based on the results obtained. 
2.1 Data Preprocessing 
The raw dataset considered in this work contains both 
relevant data and irrelevant data. For instance, some aspects 
of the load reading are recorded as string data type instead 
of numeric data type, in other cases, the values may be null. 
This kind of mix up can yield inconsistence or incorrect 
results. Based on these kinds of anomalies in the input 
dataset, this work adopted four essential steps for data 
preprocessing as presented in Figure 1. 
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Figure 1: Proposed preprocessing procedures for the target dataset 

Algorithm 1: Data cleaning algorithm 
1: Start 
2: Initialize the following parameters: ℵ , 𝑑௨ೖ

, 
ℤ → 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑎 𝑜𝑢𝑡𝑝𝑢𝑡 
3: Input ℂ → 𝑇ℎ𝑒 𝑟𝑎𝑤 𝑑𝑎𝑡𝑎 𝑖𝑛𝑝𝑢𝑡 
4: foreach data column 𝑑 in ℂ 
5:  Calculate 𝑑௨ೖ

 where 
𝑑௨ೖ

ൌ ∑ ℱሺ𝑟∄ℝሻ;     െ∞ ൏ ℝ  ∞ே
ୀ         (1) 

             Where, 𝑑௨ೖ
 defines the output vector that has all 

the null or non-numeric values in the 𝑘௧ column, 
ℱ is a filter function, 𝑁 defines number of data 
points considered,   𝑟 is the 𝑖௧ denotes  the data 
point which is to be tested, and  ℝ denotes the 
real number space that spans between െ∞ and ∞. 
If  the value of 𝑟 is outside the range of ℝ, then 𝑟 
is appended to the 𝑑௨ೖ

 vector. 
6: Calculate ℵ  where; 

ℵ ൌ
ௗೠೖ

ே
   (2) 

Where ℵ  denotes the null percentage 
which is calculated for the 𝑘௧ column.  

7: if ℵ  10 then 
8:  All the null entries in 𝑑 are set to zero 
9:  Append 𝑑 to ℤ 
10: endif 
11: return ℤ 
12: end for 
13: end 
 
Data Unification: This process is essential to this work 

since the collated data is from different sources. In 
this case, data conflicts in terms of representation, 
units, expression, and redundancies are tackled 
through correlation analysis 

Data Trimming: This development phase focuses on 
minimizing the representation of information with 
respect to its volume. There are scenarios where 

data is duplicated in the dataset. Such duplications 
are not desirable because they are capable of 
creating false impression on the predicted output. 
Two aspects of data trimming are considered in 
this work, namely: the dimensionality trimming 
and data compression. 
For dimensionality trimming, the wavelet 
transform technique is applied to transform the 
normalized data output ℤ  to wavelet vector 
coefficients which can be compressed into a 
portion of the most significant wavelet 
coefficients. Then the primary component 
analysis can be computed by locating the 
orthogonal vectors which are scaled below the 
main attribute vectors. This can significantly 
impact on dimensionality. For data compression, 
the actual data representation is scaled down to 
𝑦௦ௗ  using the standard scaler function given 
as: 

𝑦௦௧ௗ ൌ  
௬ି୫୧୬ ሺ௫ሻ

୫ୟ୶ሺ௬ሻି୫୧୬ ሺ௬ሻ
  (3) 

𝑦௦ௗ ൌ 𝑦௦௧ௗ ⋅ ሺ𝑚𝑎𝑥 െ 𝑚𝑖𝑛ሻ  𝑚𝑖𝑛 (4) 
Where ሺ𝑚𝑖𝑛, 𝑚𝑎𝑥ሻ is within the range ሺെ1, 1ሻ. It 
should be noted that Equation 4 is applied only to 
the training set. This is to avoid revealing 
information to the test set. 

Data Transformation: At this stage, the data format is 
represented in a format suitable for data mining. 
Redundancy is reduced by applying data 
normalization, discretization, and hierarchy 
formation which has to do with the modification of 
the granularity stages of the regular attributes 

2.2 System Model applicable to the two machine 
learning models 
In this work two machine learning model are employed for 
characterizing the feeder load as well as for short time 
forecasting of the load. The two machine learning models 
are recursive neural network (RNN) model and the extreme 
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