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Abstract— In this paper, high impedance 
fault (HIF) classification and location on 11kV/ 
0.415 kV Power Distribution Network (PDN) using 
Discrete Wavelet Transform (DWT) and Adaptive 
Neuro Fuzzy Inference System (ANFIS) is 
presented. In this work, MATLAB/Simulink 
package is used model the case study power 
distribution network (PDN) and to generate the 
fault signals to which the fault detection, 
classification and location mechanism are 
employed.  Specifically, the  DWT is used for fault 
feature extraction and then the Adaptive Neuro 
Fuzzy Inference System (ANFIS) is used for the 
fault detection, classification and location 
estimation. The case study 11 kV / 0.45 kV 
distribution network has six three phase pi – 
section line blocks and the fault conditions were 
set within the three phase fault blocks. The fault 
blocks were positioned at different locations to 
achieve the expected results. In the study, 5000 
different HIF scenarios were introduced at 
different locations at 50 kHz sampling rate and 
fault times of 0.1 and 0.05 seconds respectively. 
The extraction and analysis of the fault features 
were conducted using the fault current of the 
three phases. The results show that the DWT-
ANFIS HIF type classification has RMSE of 
0.00007 for the training dataset   and RMSE of 
0.00011 for the testing dataset. Also, the DWT-
ANFIS fault surface resistance classification has 
RMSE of 7.7189 for the training dataset and RMSE 
of 8.9389 for the testing dataset. The results 
captured 10 different HIF categories and a total of 
30 different HIF faults. The results of the DWT-
ANFIS HIF location estimator show that the r2 
value is approximately 1 in all the HIF scenarios 
considered. In addition, the DWT-ANFIS HIF 
location estimator has maximum RMSE of 0.01977 
km and maximum absolute error of 0.040960 km.  
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1. INTRODUCTION  
Distribution networks (DNs) are essential means of 

conveying of electric energy from injection substations to 
the consumers’ distribution power substations through a 
very short distance [1,2]. These distribution networks are 
sometimes subjected to adverse atmospheric conditions and 
terrains that may lead to the incidence of high impedance 
fault (HIF) [3,4]. Notably, HIF in DNs mostly occur when 
one or more live conductors come in contact with high 
impedance surfaces (HIS) [5,6,7]. Under HIF conditions, 
distribution power networks (PDNs) are exposed to undue 
stress and conditions that pose great danger to the PDN and 
which may also damage the PDN as well as adversely 
affect the stability and quality of the power system [8,9,10]. 
It is therefore expedient to prevent the occurrence of HIF 
and promptly respond  to the incidences of HIF by clearing 
overgrown vegetation towards distribution lines and by 
providing support under distribution lines to avoid coming 
in contact with HIS like grass and coal tar [11,12,13,14].  

Furthermore, fault detection and classification on 
distribution lines are not enough, accurate determination of 
the fault location is essential for prompt response; possibly 
immediate isolation of the faulty section of the DN and also 
prompt repairs on the faulty section of the DN [15,16,17]. 
Accordingly, in this work, an efficient framework for the 
HIF detection, classification and most importantly HIF 
location estimation on PDNs is developed. This framework 
combines the feature extraction capability of Discrete 
Wavelet Transform (DWT)  and the intelligent 
classification capability of Adaptive Neuro Fuzzy Inference 
System (ANFIS) [18,19]. Sample case study 11kV/ 0.415 
kV Power Distribution Network (PDN)  located in Eket, 
Akwa Ibom State Nigeria is used in the study. The PDN 
along with the DWT-ANFIS framework are modelled in 
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MATLAB /Simulink software. Root mean square error, 
absolute percentage error and r-square value are used as 
performance metrics for assessment of the DWT-ANFIS 
framework for HIF classification and location estimation. 

2. METHODOLOGY 

Power distribution network fault location estimation is part 
of general power transmission line fault analysis which 
includes fault detection, fault classification and fault 
location estimation, as shown in Figure 1. In this work, 
MATLAB/Simulink package is used and it requires 

modelling the power distribution network (PDN) in the 
MATLAB/Simulink environment and using the software to 
generate the fault signals to which the fault detection, 
classification and location mechanism are employed.  In 
any case, the focus of this work is on the fault location 
estimation using the combined algorithms of Discrete 
Wavelet Transform (DWT) for fault feature extraction and 
then the Adaptive Neuro Fuzzy Inference System (ANFIS) 
for the fault detection, classification and location 
estimation.  

 
Figure 1 The comprehensive flow diagram for transmission line fault analysis 
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The results of the DWT-ANFIS HIF location estimator are 
resented in Table 4 while the performance of the DWT-
ANFIS HIF location estimator are resented in Table 5.  The 
results captured 10 different HIF categories and a total of 
30 different HIF faults. The results show that the r2 value is 
approximately 1. The maximum RMSE is 0.01977  km  and 
the maximum  absolute  error  is  0.040960  km.    In  all,  the 
DWT-ANFIS HIF location estimator is very good. 

Table 4 The results of the DWT-ANFIS HIF location 
estimator 

Fault Type 
@ Fault 

Resistance 

Actual 
Distance 
(km) 

Predicted 
Distance 
(km) 

|error| km 

AG@2.7Ω  0.1  0.10003  0.000030 

AG@1.2Ω  59.3  59.30297  0.002970 

AG@3Ω  91.7  91.68074  0.019260 

BG@1.8Ω  23.7  23.6981  0.001900 

BG@0.12Ω  94.8  94.80284  0.002840 

BG@2.4Ω  99.8  99.78303  0.016970 

CG@1.2Ω  35.6  35.61032  0.010320 

CG@0.3Ω  71.1  71.09431  0.005690 

CG@2.4Ω  89.3  89.26785  0.032150 

AB@1.5Ω  11.9  11.89952  0.000480 

AB@0.6Ω  47.4  47.4  0.000000 

AB@2.7Ω  83  83.00664  0.006640 

AC@0.9Ω  23.7  23.7045  0.004500 

AC@0.12Ω  59.3  59.28873  0.011270 

AC@2.4Ω  83  83.00083  0.000830 

BC@1.2Ω  0.1  0.10005  0.000050 

BC@0.9Ω  11.9  11.89607  0.003930 

BC@0.12Ω  47.4  47.40806  0.008060 

ABG@0.3Ω  23.7  23.67962  0.020380 

ABG@2.1Ω  71.1  71.08934  0.010660 

ABG@0.9Ω  99.9  99.85904  0.040960 

ACG@2.7Ω  35.6  35.63062  0.030620 

ACG@1.5Ω  83  82.96182  0.038180 

ACG@1.2Ω  94.8  94.81138  0.011380 

BCG@3Ω  11.9  11.89548  0.004520 

BCG@1.8Ω  59.3  59.3  0.000000 

BCG@0.9Ω  80  80.04  0.040000 

ABC@3Ω  0.1  0.10002  0.000020 

ABC@1.8Ω  47.4  47.41422  0.014220 

ABC@0.6Ω  94.8  94.77156  0.028440 

 

 

Table 5 The performance of the DWT-ANFIS HIF 
location estimator 

S/N 
Fault Type 

@ Fault 
Resistance 

RMSE |error| (%) R2 

1  AG   0.011251  0.005 to 0.03  1 

2  BG   0.009994  0.003 to 0.017  1 

3  CG   0.01977  0.008 to 0.036  1 

4  AB   0.003844  0 to 0.008  1 

5  AC   0.007023  0.001 to 0.019  1 

6  BC   0.005177  0.017 to 0.05  1 

7  ABG   0.027121  0.015 to 0.086  1 

8  ACG   0.02901  0.012 to 0.086 
0.999
999 

9  BCG   0.023241  0 to 0.05  1 

10  ABC   0.018358  0.02 to 0.03  1 

 

4. CONCLUSION 

Classification and location estimation of High Impedance 
Fault (HIF) on a power distribution network (PDN) is 

presented. The HIF classification and location estimation is 
based on discrete wavelet transform and Adaptive Neuro 
Fuzzy Inference System (ANFIS). The case study PDN is 
located in Eket in Akwa Ibom State. The simulation was 

conducted using MATLAB /Simulink software. The results 
show that the DWT and ANFIS combined algorithm can 

effectively be used to detect, classify and estimate the 
location of HIF in PDN. 
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