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Abstract— In this paper, determination of 
optimal number of Clusters using Gap Statistics 
and Elbow methods is presented.  The algorithms 
to determine optimal number of cluster using Gap 
statistics and the Elbow methods are presented 
along with some of the key mathematical models 
associated with each of the two methods. A 
program developed using Python 3 in Pycharm 
development environment was used to simulate 
the Gap Statistics and Elbow algorithms. The case 
study considered has an area, A with dimensions 
of 800m × 800m which amounts to a 640 km^2 
area. The results obtained for the Elbow method is 
presented in Figure 2. The results show that the 
Elbow method gave optimal number of clusters as 
four, hence the 5000 sensors nodes are grouped 
into four clusters given as;𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝟎 , 𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝟏 , 
𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝟐 and 𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝟑. On the other hand, the 
results show that the Gap Statistics method gave 
optimal number of clusters as five, hence the 5000 
sensors nodes are grouped into five clusters 
given as;𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝟎, 𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝟏, 𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝟐, 𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝟑 
and 𝑪𝒍𝒖𝒔𝒕𝒆𝒓 𝟒. In addition, the results show that it 
took 5.8 seconds for the Elbow method to 
determine the optimal number of clusters whereas 
it took the Gap statistics method 5.3 seconds. 
There is therefore, about 0.5 seconds gained by 
using the Gap statistics method which is about 
8.62069 % improvement in the implementation 
time over the Elbow method. Therefore, the Gap 
Statistics method is recommended given its better 
implementation time. 
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1. INTRODUCTION 

Over the years, wireless sensors have been 
deployed as part of diverse systems [1,2,3,4]. The 
advancement in the sensor technologies, computational 

technologies and communication technologies have given 
rise to more applications of these sensors in more systems 
like smart cities, smart health, smart transport and other 
areas that most often require deployment of large numbers 
of sensor nodes [5,6,7,8]. Generally, wireless sensors are 
known to be resource constrained. Many of the sensors are 
battery powered with limited lifespan. As such, deployment 
of such sensors requires careful planning to maximize the 
battery lifespan [9,10,11,12,13]. Clustering has been used 
as one of the means of achieving such energy management 
in wireless sensor network [14,15,16]. 

In clustering, the sensors in the network are 
grouped into clusters. However, the number of cluster 
suitable for a given network must be determined [17,18,19]. 
This is achieved using computational techniques. In this 
work, gap statistics and elbow methods are considered 
[20,21,22]. The two methods are considered because of 
their simplicity and accuracy in computing the optimal 
number of clusters. Moreover, the two methods approaches 
the problem using different concepts which do affect their 
solutions and computation time. As such, in this work, the 
algorithm for the two methods are presented and their 
performances are evaluated through simulations based on 
certain number of sensor nodes and network coverage area. 
In all, the study seek to identify the more accurate and more 
efficient method to be recommended for cluttering 
applications in wireless sensor network design. 
2. METHODOLOGY 
2.1 DETERMINATION OF OPTIMAL NUMBER OF 
CLUSTERS USING GAP STAT 
In the Gap Statistics (GS) approach, first a null reference 
data distribution is given and it is used as the reference 
value to compare the cluster congestion of compactness. 
The optimum cluster number is achieved at the point at 
which the congestion value is the highest with respect to the 
reference curve. The point at which the congestion is 
highest, from the reference curve is considered as the 
optimal number of clusters. Gap statistics denoted as 
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𝐺𝑎𝑝ሺ𝑘ሻ can be calculated using the expression in Equation 
2 [23,24]; 

𝐺𝑎𝑝ሺ𝑘ሻ ൌ ∑ ሼlogሺ𝛿ሻሽ െ logሺ𝛿ሻ  (1) 
Where, 𝛿  represents the degree of clustering which is 
based on 𝑊𝐶𝑆𝑆  which can be calculated using the 
expression in Equation 3 [23,24]; 

𝑊𝐶𝑆𝑆 ൌ ∑ ∑ ‖𝑥 െ 𝑦‖ଶ
௬∈ೖ௫∈ೖ

  (2) 

The procedure to determine optimal number of cluster 
using gap statistics is presented in Algorithm 2 and it shows 
that 𝑊𝐶𝑆𝑆, in this case is calculated by using the 𝑖𝑛𝑒𝑟𝑡𝑖a_ 
property of 𝐾𝑀𝑒ans method. 
Algorithm 2: Determination of optimal number of 
clusters based on Gap Statistics method 
1: Begin 
2: Define null reference 
3: Compute the cluster congestion 
4: Group the reference data set with different number of 
clusters 
5: Compute the congestion average on the dataset 
6: Compute Gap statistics based on Equation 1 
7: End 
2.2 DETERMINATION OF OPTIMAL NUMBER OF 

CLUSTERS USING ELBOW METHOD 
The Elbow method presents a simple way to determine the 
optimum number of clusters for a given set data items to be 
clustered. In this method, a guess number of clusters, n is 
initially chosen, the clustering algorithm, which in this 
study is the K-means method is used to cluster the data 
items in the n different clusters. The total of the within-
cluster sum of square (WSS) is computed for the n number 
of clusters used in the clustering. The number of clusters, 
np that results in the minimum value of WSS is deem as the 
optimal value.  

So, the Elbow method starts with initial n (number of 
clusters, say 2, determine the sum of WSS for the two 
clusters, increase n by 1, compute WSS again. If the value 
of WSS obtained with n+1 is the same or approximately no 
significant difference is observed, then n is taken as the 
optimal number of clusters required. 

If on the other hand, WSS for n+1 is greater than WSS for 
n, the value of n is incremented, the clustering is performed 
and WSS is compute. The process is repeated until the 
minimum value of WSS is obtained and the value of n 

corresponding to the minimum value of WSS is take as the 
optimal value.  

Mathematically, let 𝑊𝑆𝑆 denote the within-cluster sum of 

square for the jth cluster where there are n number of 
clusters. Then, 𝑊𝑆𝑆ሺ𝑛ሻ  is defined as [25,26];  

𝑊𝑆𝑆ሺ𝑛ሻ = ∑ ൫𝑊𝑆𝑆൯ୀ
ୀଵ        (3) 

The Elbow method will compute  𝑊𝑆𝑆ሺ𝑛ሻ  for different 
values of n and will adopt n for which 𝑊𝑆𝑆ሺ𝑛ሻ is minimal. 

A simple procedure for the optimum number of clusters 
determination using the Elbow method and K-means 
algorithm is presented as Algorithm 1.   

Algorithm 1.   

Step 1: Input nmax  / / the maximum number of clusters to 
be considered.  

Step 2: Initialize n = 1  / / n is the guess optimum number of 
clusters to be considered at the moment  

Step 3: Compute WSSn // WSSn is the sum of within-
cluster sum of square (WSS) for n 
Step 4:   n = n + 1 
Step 5: If n ≤ nmax Then Gotp Step 3 Else Goto Step 6 
Step 6:   Plot the graph of  WSSn versus n 
Step 7:   Locate the knee  or sharp bend in the curve of  

WSSn versus n . The value of n at the knee point 
is the optimum number of clusters. 

Step 8:   End 
 

2.3 SIMULATION OF THE GAP STATISTICS 
AND ELBOW METHODS 
A program developed using Python 3 in Pycharm 
development environment was used to simulate the Gap 
Statistics and Elbow algorithms. The case study considered 
has an area, A with dimensions of 800m × 800m which 
amounts to a 640 km^2 area.  A total of 5000 sensor nodes 
were randomly distributed within the 640 km^2 area as 
depicted in Figure 1. The simulation program was 
separately implemented for the Gap Statistics and Elbow 
methods. 
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4.  CONCLUSION 
The paper presented two methods for determination of the 
optimal number of clusters to be used in sensor node 
clustering. The two methods are the Elbow method and the 
Gap statistics method. The two methods were simulated 
using a python program and the results show that the gap 
statistics gave five as the optimal number of clusters 
required whereas the Elbow method gave four. Also, the 
results show that the Gap statistics method execution time 
is better than that of the Elbow method. Hence, it is better 
to use the Gap statistic method given its fact 
implementation time.  
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