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Abstract— In this paper, comparative 
performance evaluation of machine learning 
algorithms for breast cancer prediction is 
presented. The machine learning algorithms are 
decision tree, random forest, K-nearest neighbors, 
logistic regression and the support vector 
machine. The Wisconsin breast cancer (WBC) 
dataset available online in Kaggle repository is 
employed. The WBC Dataset consists of 569 
patients’ records with 35 columns per record. The 
acquired dataset was preprocessed; notably 
irrelevant features in the data records were 
removed. Also, feature scaling and 5-fold data 
splitting were conducted. Each of the five machine 
learning models were iteratively trained and also 
validated using each of the fivefold data divided 
into 80 % training and 20 % validation dataset. The 
model results show that for the training dataset, 
the Decision tree algorithm has the best F1 score 
of 99.331% followed by the Logistic Regression 
model with F1 score of 98.733 % while the KNN 
model has the worst F1 score of 96.003 %. On the 
other hand, for the validation dataset, the SVM 
algorithm has the best F1 score of 96.696% 
followed by the Logistic Regression model with F1 
score of 96.678 % while the Decision tree model 
has the worst F1 score of 91.673 %. In addition, 
the confusion matrix results show that the logistic 
regression model gave the lowest number of false 
predictions and the highest number of true or 
correct predictions. As such, among the five 
machine learning models studied, the logistic 
regression model has the best prediction 
performance and hence is recommended for 
breast cancer prediction. 

 

Keywords— Decision Tree, Breast Cancer 
Prediction, Random Forest, Wisconsin Breast 
Cancer Dataset, Machine Learning Algorithms, K-
Nearest Neighbors , K-Nearest Neighbors, Logistic 
Regression, Support Vector Machine 

 
1. INTRODUCTION 

 
Across the globe, cancer has been identified as one 

of the worst diseases which claims millions of lives every 
year  [1,2,3]. Among the different kinds of cancer, breast 
cancer is the one most prevalent among women [4,5,6]. 
There were about 2.26 million new instances of breast 
cancer worldwide in 2020 [7], making it the most prevalent 
kind of cancer. Additionally, it is the most prevalent form 
of cancer in women in both developed and developing 
nations, which is a significant issue for public health 
[8,9,10].  

In any case, early detection and treatment has been 
identified as a more suitable way to address the rising 
challenges posed by breast cancer [11,12,13,14,15]. In this 
wise, medical experts are adopting approaches that can be 
used to detect breast cancer at the early stage of its 
development or to predict the likelihood of its occurrence in 
a patient so as to take proactive measures to avert it 
occurrence. Notably, machine learning solutions are 
employed in recent years to assist medical expert to analyze 
medical records of patients and thereby predict the 
likelihood of breast cancer [16,17,18,19,20]. Accordingly, 
this work is focused on the application of five different 
machine learning models to predict breast cancer based on a 
case study dataset of medical records of breast cancer 
patients. The machine learning algorithms considered in 
this study includes decision tree, random forest, K-nearest 
neighbors, logistic regression and the support vector 
machine [21,22,23]. The prediction performance of the five 
models are evaluated through metrics like the F1 score, true 
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very important in the Healthcare industry. As such, among 
the five machine learning models studied, the logistic 

regression model has the best prediction performance for 
breast cancer.  

 

 
Figure 5 The Logistic Regression F1 score 

  

 
Figure 6 The KNN  F1 score 
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Figure 7 The SVM  F1 score 

 

 
Figure 8 The Decision Tree F1 score 

 

 
Figure 9 The Random Forest   F1 score 
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Figure 10 The mean  F1 scores for the five machine learning models based on the training dataset 

 

 
Figure 11 The mean  F1 scores for the five machine learning models based on the validation dataset 

 

 

Figure 12   Summary of Confusion Matrix Result  
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4. CONCLUSION 
The breast cancer prediction capability of five machine 
learning models based on a given case study breast cancer 
patients dataset is presented. The machine learning models 
considered are decision tree, random forest, K nearest 
neighbors, logistic regression, and the support vector 
machine. The models are individually trained and validated 
iteratively using 5-fold dataset splitting technique. The 
results show that the logistic regression model has the best 
prediction performance as it has the highest number of true 
or correct predictions and the lowest number of false or 
incorrect predictions.  On the other hand, the decision tree 
model has the least prediction performance as it has the 
lowest number of true or correct predictions and the highest 
number of false or incorrect predictions.   
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