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Abstract— In this paper, comparative analysis of 
variations in the slant range and free space pathloss for 
sun-synchronous satellite-earth communication link 
operating at K, Ku and Ka frequency bands is 
presented.  The case study satellite is NIGERIASAT 2 
which is a Sun-Synchronous Orbit (SSO) satellite with 
orbital altitude of 718 km, perigee of 686.4 km, apogee 
of 700.3 km, orbital inclination of  97.8 °, orbital period 
of 98.5 minutes  and semi major axis of 7064 km. The 
elevation angles extracted from 10-days online satellite 
tracking data for NIGERIASAT 2 (Available at 
https://www.n2yo.com/passes/?s=37789) with earth 
station in Akwa Ibom State Nigeria at latitude of 
5.015209° and longitude of 7.912815° are used in the 
analysis. The results show that the graph of the 
elevation angle has a shape that repeats every 60 hours. 
Also, the minimum elevation angle is 10° while the 
maximum elevation angle is 88° which occurred once at 
the 144th hour. Also, the lowest slant range of 700.38 
km occurred at the 144th hour with the highest 
elevation angle of 88° while the highest slant range of 
2,155.28 km occurred at 228th hour with the lowest 
elevation angle of 10°. The results show that among the 
three frequency bands, the Ka-band with frequency of 
35 GHz has the highest path loss in all the elevation 
angles. In the other hand, the 15 GHz Ku-band 
frequency has the lowest pathloss among the three 
frequencies considered.   

Keywords— Free Space Pathloss, Sun-Synchronous 
Satellite, NIGERIASAT 2, Slant Range, Communication 
Link   

 

1. Introduction 
Satellite communication systems generally 
operate wirelessly in the microwave frequency 
band [1,2,3,4,5,6,7,8,9,10]. Notably, microwave 
signals require line-of-sight and this is generally 
adopted in satellite communication systems. 
However, even with clear line of sight, the 
satellite signal still suffer from free space path 
loss. Besides, there are other atmospheric and 
interference issues that can also affect the 
satellite signal [8. 9. 10, 11, 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 23]. In many cases, the 
effect on the signal is dependent on the 
frequency of the signal as well as the 
propagation path length.  The degree to which 
signal is effected also depends on the type of 
satellite and the satellite orbit. In this paper, the 
focus is on the Sun-synchronous satellite which 
is mainly used for Earth observation purposes 
[24,25,26,27,28,29]. 

 
Sun-synchronous satellite or Sun-Synchronous 
Orbit (SSO) satellite is one of the categories of 
satellite which is designed and located in orbit in 
such a way that it synchronises its position and 
movements relative to the sun 
[30,31,32,33,34,35]. Generally, the Sun-
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orbital altitude of 718 km, perigee of 686.4 km, 
apogee of 700.3 km, orbital inclination of  97.8 
°, orbital period of 98.5 minutes  and semi major 
axis of 7064 km. The elevation angle extracted 
from 10-days online satellite tracking data for 

NIGERIASAT 2 (Available at 
https://www.n2yo.com/passes/?s=37789) with 
earth station in Akwa Ibom State Nigeria at 
latitude of 5.015209° and longitude of 7.912815° 
is presented in Table 1. 

 

Table 1 The elevation angle extracted from 10-days online satellite tracking data for NIGERIASAT 2 
(Available at https://www.n2yo.com/passes/?s=37789) with earth station in Akwa Ibom State 

Nigeria at latitude of 5.015209° and longitude of 7.912815° 

S/N 
Time 

(Hour) 
Elevation 
Angle (°) 

S/N 
Time 

(Hour) 
Elevation 
Angle (°) 

S/N 
Time 

(Hour) 
Elevation 
Angle (°) 

1 0.0000 33 11 84.5333 79 21 169.1500 27 

2 1.6500 11 12 96.8833 43 22 179.8000 20 

3 12.2667 47 13 107.5500 12 23 181.4333 20 

4 24.6167 74 14 109.1667 31 24 192.1500 46 

5 36.9000 52 15 119.9000 28 25 204.4167 66 

6 47.6500 17 16 121.5333 14 26 216.7833 52 

7 49.2667 22 17 132.1667 39 27 227.4500 10 

8 59.9000 24 18 144.5167 88   Minimum 10 

9 61.5333 17 19 156.7833 63   Maximum 88 

10 72.2667 55 20 167.5500 15   Average 49 

             Δ%  ±79.591836
3.  Results and Discussion 

The earth radius ( 6378 km ), satellite orbital 
altitude (Hs) of 718 km and elevation angle data 
in Table 1 are used to compute the slant range 
and free space pathloss for 15 GHz Ku-band,  25 

GHz K-band and  35 GHz Ka-band  frequencies 
and the results are presented in Table 2  and in 
Figure 2 to Figure 7. 

 
 

 
Table 2 The results of the computed slant range and free space pathloss for 15 GHz Ku-band,  25 GHz K-

band and  35 GHz Ka-band  frequencies 

Time (Hour) 
Elevation Angle 

(°) 
Slant range , L  

(Km) 
Pathloss for 15 
GHz Ku-Band 

Pathloss for 25 
GHz K-Band   

 Pathloss for 35 
GHz Ka-Band    

0 33 1,161.58 177.2628 181.6998 184.6223

1.65 11 2,084.58 182.3422 186.7792 189.7017

12.2667 47 919.10 175.2291 179.6661 182.5887

24.6167 74 725.27 173.1718 177.6088 180.5314

36.9 52 862.97 174.6818 179.1187 182.0413

47.65 17 1,726.43 180.7048 185.1418 188.0643
49.2667 22 1,500.19 179.4848 183.9218 186.8443

59.9 24 1,424.41 179.0345 183.4715 186.394
61.5333 17 1,726.43 180.7048 185.1418 188.0643
72.2667 55 834.75 174.393 178.8299 181.7525
84.5333 79 711.77 173.0087 177.4456 180.3682
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96.8833 43 973.73 175.7306 180.1676 183.0902
107.55 12 2,017.25 182.057 186.494 189.4165

109.1667 31 1,210.63 177.622 182.059 184.9816
119.9 28 1,293.48 178.197 182.634 185.5566

121.5333 14 1,892.14 181.5009 185.9379 188.8604
132.1667 39 1,038.90 176.2933 180.7303 183.6528
144.5167 88 700.38 172.8686 177.3055 180.2281
156.7833 63 775.79 173.7567 178.1937 181.1162

167.55 15 1,834.11 181.2303 185.6673 188.5899
169.15 27 1,323.86 178.3987 182.8357 185.7582
179.8 20 1,583.93 179.9566 184.3935 187.3161

181.4333 20 1,583.93 179.9566 184.3935 187.3161
192.15 46 931.88 175.349 179.786 182.7085

204.4167 66 758.87 173.5652 178.0022 180.9248
216.7833 52 862.97 174.6818 179.1187 182.0413

227.45 10 2,155.28 182.6319 187.0689 189.9914
Minimum 10.00 700.38 172.87 177.31 180.23
Maximum 88.00 2,155.28 182.63 187.07 189.99
Average 49 1427.832 177.7502 182.1872 185.1098
Δ%  ±79.591836 ± 50.947688 ± 2.7463649 ± 2.6794801 ± 2.6371758 

 
The graph of elevation angle versus the time (in 
hours) within the 10-days online satellite 
tracking data for NIGERIASAT 2 is shown in 
Figure 2 while the graph of slant range versus 
the time (in hours)  is shown in Figure 3. The 
results show that the graph of the elevation angle 
has a shape that repeats every 60 hours. Also, the 
minimum elevation angle is 10° while the 
maximum elevation angle is 88° which occurred 
once at the 144th hour. 
Aon the other hand, from Figure 3 and Figure 2, 
the results show that the slant range is high at the 
low elevation angles and low at the high 
elevation angles. Specifically, the lowest slant 
range of 700.38 km occurred at the 144th hour 
with the highest elevation angle of 88° while the 
highest slant range of 2,155.28 km occurred at 
228th hour with the lowest elevation angle of 
10°. The graph of slant range versus elevation 

angle obtained within the 10-days online satellite 
tracking data for NIGERIASAT 2 is shown in 
Figure 4. The results show that the slant range is 
highest at the lowest elevation angle of 10°  and 
lowest  at the highest elevation angle of 88°.  
The graph of pathloss versus the time (in hours) 
within the 10-days online satellite tracking data 
for NIGERIASAT 2 is shown in Figure 5, that of 
pathloss versus elevation angle is shown in 
Figure 6 while that of pathloss versus slant range 
is shown in Figure 7. The results show that 
among the three frequency bands , the Ka-band 
with frequency of 35 GHz has the highest path 
loss in all the elevation angles. The 15 GHz Ku-
band frequency has the lowest pathloss among 
the three frequencies considered. Also, the 
pathloss for each of the frequencies is highest at 
the lowest elevation angle of 10° and lowest at 
the highest elevation angle of 88°.  
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Figure 2 The graph of elevation angle versus the time (in hours) within the 10-days online satellite 

tracking data for NIGERIASAT 2 (Available at https://www.n2yo.com/passes/?s=37789) 

 
Figure 3 The graph of slant range versus the time (in hours) within the 10-days online satellite tracking 

data for NIGERIASAT 2 (Available at https://www.n2yo.com/passes/?s=37789) 
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Figure 4 The graph of slant range versus elevation angle obtained within the 10-days online satellite 

tracking data for NIGERIASAT 2 (Available at https://www.n2yo.com/passes/?s=37789) 
 

 
Figure 5 The graph of pathloss versus the time (in hours) within the 10-days online satellite tracking data 

for NIGERIASAT 2 (Available at https://www.n2yo.com/passes/?s=37789) 
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Figure 6 The graph of pathloss versus elevation angle obtained within the 10-days online satellite tracking 

data for NIGERIASAT 2 (Available at https://www.n2yo.com/passes/?s=37789) 
 

 
Figure 4 The graph of pathloss versus slant range obtained within the 10-days online satellite tracking 

data for NIGERIASAT 2 (Available at https://www.n2yo.com/passes/?s=37789) 
Conclusion 

The slant range and pathloss of a sun-
synchronous satellite is studied. The study 
considered the pathloss for three different 
frequency bands, namely; the Ku-band, the K-
band and the Ka-band. The values of the 
elevation angle of the satellite are obtained from 
a 10-days satellite track prediction data obtained 
using an online tool available at 
https://www.n2yo.com/passes/?s=37789. The 
elevation angle are then used to determine the 
slant range and pathloss for the selected 
frequency bands. The results showed that among 
the three frequency bands considered in the 
study, the Ka-band with the highest frequency 

has the highest pathloss in all cases.  Also, the 
elevation angle , the slant range and the pathloss 
of the  satellite vary over a period of time and 
repeats the values periodically.  
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