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Abstract— In this paper modelling and evaluation 
of Style Generative Adversarial Network 
(StyleGAN)  for generation of unique African 
Ankara design patterns is presented. The 
StyleGAN is an extensive modified version of the 
conventional GAN architecture which instead of 
being able to just generate new images from 
sample input dataset, the StyleGAN provides the 
ability to control the new styles or new design 
patterns that are generated. The key steps 
followed in conducting the study included data 
collection, data pre-processing, model 
development, model training, and model 
deployment and evaluation. The input image 
dataset consist of about 3000 different African 
Ankara clothes with prints or design patterns 
which were collected from different markets in 
various locations across Akwa Ibom State Nigeria. 
The Google Collaboratory was used to execute the 
model development, training and evaluation with a 
RAM size of 12.69GB and disk space of 107.72 GB. 
The results showed that the Frechet Inception 
Distance (FID) metric scores for the StyleGAN 
model for all the epochs are acceptable , as they 
are below the threshold value of 100 and the  FID 
metric score is also increasing steadily 
(decreasing) with increase in the epoch. Also,the 
recall, precision and F-measure metrics scores for 
the StyleGAN model are have acceptable scores 
(which are above 50 %). The result that the 
StyleGAN model performed well in all the 
performance metrics used. Also, when compared 
with some published research results, the 
StyleGAN presented in this paper performed 
better than those other models examined. 
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1. Introduction 
 

Africans are traditionally identified by their 
Ankara and other native print attires which endear them to 
the rest of the western world [1,2,3,4,5]. These Ankara 
materials are mostly use as uniforms for marriages, child 
naming ceremonies, coronations, festivals, burials, church 
services, decoration at different occasions and events and so 
on. It has in fact become an object of national pride in 
which patriotic leaders of Africa wear as a mark of national 
identification at international events. As a result of the 
numerous uses and adoption of Ankara, the demand for it is 
very high and the traditional or manual mode of designing 
the material is battling to meet up the high demand. This 
has resulted in scarcity of unique Ankara patterns. This 
problem has left many with no option than adopting more 
uniforms at a particular occasion and sometimes subjects 
themselves to travelling long distances in search of unique 
Ankara patterns laced with their desired colours suitable for 
the intended occasion.  
However, there has been series of innovations in the 
printing and designing of these wears which unfortunately 
requires much of intellectual stress and time from the 
conceptualization process to the actual designing and 
printing [6,7,8,9,10]. Most printed Ankara comes with 
repetition of same design patterns because of the manual 
mode of production with series of production lines which 
add up to increasing the cost of the printed Ankara material. 
Importantly, several researchers have sort out ways of 
solving the problem of the clothing industries through the 
adoption of the ease of achieving tedious tasks introduced 
by the field of Artificial Intelligence (AI) 
[11,12,13,14,15,16,17]. Using AI models, intensive analysis 
was done on whether consumers would be willing to buy 
fabric prints generated by Generative Adversarial Model 
(GAN). The result of the survey analysis came out very 
impressively successful. Out of the total number of 
consumers contacted, 90% of the consumers were willing to 
purchase AI generated designs [18,19].  

Furthermore, many researchers have successfully 
deployed Artificial Intelligence (AI) technology in the 
textile and fashion industry to foster the growth of the 
sector by ensuring customer acceptability of Artificial 
Intelligence (AI) generated textile products. Style matching 
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Figure 5 The mapping network of StyleGAN 
 
 
2.6 The Adaptive Instance Normalization (AdaIN) 
 The Adaptive Instance Normalization (AdaIN) is a 
normalization method which aligns the mean and variance 
of the content features with those of the style (pattern) 
features. The instance normalization is in charge of 
normalizing the input to a single style specified by the 

affine parameters, as shown in Figure 6. Learned affine 
transformations specialize 𝜔  to style y which controls 
AdaIN operations after each convolution layer of the 
synthesis network. Thus, through ADaIN, the feature map 
is translated into a visual representation. 
 

 
 

Figure 6 Adaptive instance operations of a StyleGAN 
 

2.7  Stochastic Variation 
The noise inputs into the model which were 

applied in addition to image samples from the gathered 
Ankara dataset took the form of two-dimensional matrices 
sampled from a Gaussian distribution. The Gaussian 
distribution were scaled by up-sampling to match the 
dimensions within the layer which were kept at 200 X 200 
pixels and applied to each channel which help introduce 
variation within the feature space.  

The Gaussian noise is a statistical noise having a 
probability density function equal to normal distribution 
also known as Gaussian Distribution. Random Gaussian 
function is added to image function to generate this noise. 
Training a neural network with smaller dataset such as our 
gathered Ankara dataset can cause the network to memorize 
all training examples and therefore cause the model to over-
fit thereby impeding on the model performances. It could 
equally present a harder mapping problem for such model 
given the patchy or sparse sampling prints in the high 
dimensional input space. In order to ensure the StyleGAN 
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model performed optimally, the noise input was then 
introduced during training and helped smoothened the input 

space and consequently resulted into a better generalization 
and faster training and is shown in Figure 7. 

 
 

Figure 7 The application of Gaussian noise to StyleGAN model. 
 
2.8 The StyleGAN model training  
The StyleGAN model was trained on Tensorflow deep 
learning framework on Google Collaboratory running 
NVIDIA K80 GPU. For the StyleGAN model whose 
architecture is shown in Figure 4, the study adopted 
iterative training procedure which gave room for model 
fine-tuning and parameter adjustment till desired Ankara 
output was gotten from the model. The training was done in 
mini batches of 32 using Adam optimizer with following 
hyperparameters (learning rate, lr = 0.001, beta_1, β1 = 0.9, 
beta_2, β2 = 0.999, epsilon, ℓ = 1ℓ - 07). The metrics used 
for monitoring the model’s’ performances were loss values 
and accuracy at each mini-batches and epochs depending 
on experimental need. 
 
2.9  Training epochs 

In this research experiments, epoch connotes the 
number of times the learning algorithms successfully made 
a complete iteration through the entire Ankara dataset. One 
epoch therefore means that each sample or data points in 
the Ankara training dataset have had the opportunity of 
updating the internal model’s parameters for a better 
performance result. An epoch for this research is set to 
1000 i.e 1 Epoch = 1000 iterations and is represented in the 
x-axis of the model performances graphs in the result and 
discussions. 
 
2.10 Discriminator loss functions 
 It is a method of quantifying or measuring how 
well the discriminator was able to distinguish real images 
from fake ones. This is done by comparing the 
discriminator’s prediction on real images to an array of 1s 
and the discriminator’s prediction on fake images 
(generated) to an array of 0s. The Binary cross entropy was 
used to achieve this. 
 
2.11 Generator loss functions 
 It is a measurement of how well the generator was 
able to trick the discriminator. When the generator is 
performing satisfactorily well, the discriminator started 
classifying the fake images as real (or 1s) i.e., the generator 

loss valued started approaching 1 (one).  The Adam 
optimizer was used at both the discriminator and generator 
network. 
 
2.12  Frechet Inception Distance (FID):  
Frechet Inception Distance (FID) evaluate the performance 
of generative adversarial networks. FID represent an 
improvement of another metric called the Inception Score 
(IS) which estimates the quality of a collection of synthetic 
images based on how well the top performing image 
classification model Inception V3 classifies the images as 
one of the 1000 known objects. However, inception score 
does not capture how synthetic images are compared to real 
images. Conscious of this drawback, FID is chosen as a 
qualitative metric to evaluate this research experimental 
GAN models. 
Just like Inception Score, FID uses the inception V3 model 
and is implemented at the last pooling layer of these models 
to capture computer-vision-specific features of imputed 
images. Captured activations are calculated for real and 
generated images and summarized as a multivariate 
Gausian by calculating the mean and covariance of the 
images. The distance between these two distributions is 
what is calculated using Frechet distance otherwise called 
Wassertein-2 distance.  
 In this research experiments, FID scores were 
calculated by loading a pre-trained Inception V3 model 
first. This was followed by removing the outer layer of the 
model and taken as activations from the last pooling layer. 
The outer later was made up of 1000 activations. Therefore, 
each image was predicted as 1000 feature vector of the 
images. These 1000 feature vectors are then predicted for a 
collection of real images from the dataset to offer insight as 
to how accurate the models are in representing real images. 
The same procedure was repeated for fake images 
generated by the generator which then resulted in two 
collections of 1000 feature vectors each for the real and 
generated images. 
 
2.13 Precision 
  Precision metric quantifies the number of correct 
positive predictions a model makes.  It evaluates the 
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Figure 14 StyleGAN FID metric score versus model training epochs 

 Table 2 The  Recall,  Precision and F- Measure metrics scores of the StyleGAN  

Recall (%) score  for the StyleGAN  Precision (%)score  for the StyleGAN F-measure (%)score  for the StyleGAN 

58.1 62 56 

 

 
Figure 15 The  bar chart of Recall,  Precision and F- Measure metrics scores of the StyleGAN Model 

3.1 Comparison of the StyleGAN model with some 
already published models 
The study in [33] proposed an automatic colouring model 
for ethnic costume sketches using generative adversarial 
networks. The GAN model used adopted smooth loss 
during training in order to increase stability with a fully 
connected layer in the output layer to reduce human 
intervention on parameters. The model successfully 
transforms hand-drawed ethnic costumes into coloured 
costumes but lacks in aesthetics. The chosen styleGAN 
model for this research however uses stochastic noise for 
stability of training and is capable of generating Ankara 
prints reflecting unique patterns peculiar to Africans and 
reflecting aesthetics through its uniquely decorative 
patterns. 
In a similar research, [34] proposed ClothGAN, a 
Generative Adversarial Network model for generating 

fashionable Dunhuang clothes blending old and new beauty 
of the print though with poorly designed garment styles. 
StyleGAN used for this research demonstrate an unequal 
capability of generating Ankara with unique African prints. 
Whereas generated Dunhuang clothe were evaluated using 
Inception Scores (IS), Ankara generated by StyleGAN 
model for this research were evaluated using Frechet 
Inception Distance (FID) which is an improvement of [34].  
The study in [35]  gave a consolidated backing for AI 
generated products when their research “Artificial 
Intelligence in the fashion industry: consumer responses to 
Generative Adversarial Networks (GAN) technology 
assessed the customer’s willingness to purchase AI 
generated fashion items. Ankara prints generated through 
this research using StyleGAN if properly approved could 
solve the bottleneck posed by the traditional batik mode of 
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producing Ankara with limited supply of unique Ankara in 
the market to meet the massive demand and usage. 

 
4. Conclusion 

The paper presented the Style Generative Adversarial 
Network (StyleGAN) model development, training and 
application in generating new and unique African Ankara 
designs from set of existing Ankara designs fed into the 
model as input dataset. The model performance was 
performance was quantified in terms of Frechet Inception 
Distance (FID) score, Precision, Recall, and –measure or F1 
Score. The StyleGAN model was trained on Tensorflow 
deep learning framework on Google Collaboratory running 
NVIDIA K80 GPU. The model was trained using a 3000 
image dataset locally sourced African Ankara design 
patterns. The result that the StyleGAN model performed 
well in all the performance metrics used. Also, when 
compared with some published research results, the 
StyleGAN presented in this paper performed better than 
those other models examined. 
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