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Abstract— In this paper, determination of visibility
time for geodesic satellites orbiting the earth on
circular orbit subject to minimum zenith angle
restriction is presented. The visibility time analytical
expression is derived with respect to orbital altitude or
orbital height of the satellite along with minimum
zenith angle restriction. The numerical examples are
presented with respect to three geodetic satellites,
namely; LAGEOS-1, JASON 3 and TANDEM X. The
orbital altitude of TanDEM-X satellite is 508.41 km
which is the lowest among the three satellites. Notably,
the orbital altitude of the Lageos-1 satellite is about
11.6 times that of the TanDEM-X satellite while that of
Jason-3 satellite is about 2.6 times the altitude of the
TanDEM-X satellite. The results show that among the
three geodesic satellites considered, TanDEM-X
satellite with the lowest altitude has the lowest visibility
time. Also, with minimum zenith angle restriction value
of 0°, the Lageos-1 satellite has the maximum visibility
time of 73.5 minutes along with the highest visibility
angle of 58.7°. The visibility time and visibility angle of
the Lageos-1 satellite drop to 51.1 minutes and 40.8° at
minimum zenith angle restriction value of 20°. The
analytical models that relates the visibility time of each
of the satellites with the minimum zenith angle
restriction are also derived. In all, the results show that
the higher the orbital altitude, the higher the visibility
time of the satellite. Also, the minimum zenith angle
restriction significantly affect the visibility time of the
satellite; notably, the visibility time decreases as the
value of minimum zenith angle restriction increases.
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1. Introduction

Geodesy is a science with major focus on measurement
and establishment of clear understanding of the basic earth
properties, namely; the earth geometry, the earth
gravitational rotation, the gravity and the geoid [1,2, 3.4,
5,6, 7,8, 9,10, 11]. Such measurements in many cases
involve the use of satellites which can be referred to as
geodetic satellites [12,13, 14, 15, 16, 17, 18, 19,20]. In this
paper, the geodetic satellites considered are LAGEOS-1,
JASON 3 and TANDEM X satellites [21, 22, 23, 24, 25,
26,27, 28].
In any case, in order to be used for data capture on any
given earth location, the satellite must be visible from that
earth location. As such, satellite visibility determination is
essential for its application on geodetic measurements
[29,30, 31,32, 33,34]. The visibility time computation is
used to determine the amount of time that the satellite is
visible from earth [35, 36, 37, 38, 39, 40]. The visibility
time is usually a fraction of the satellite’s orbital period.
Again, the visibility time determination depends on the
nature or shape of the satellite orbit. For highly eccentric
orbit, the eccentricity pays significant role in the
determination of the visibility time [41,42,43,44,45].
However, for circular or near circular orbits with very low
eccentricity values, the orbital altitude has much influence
in the value of the visibility time [46,47].
Notably, the three satellites considered in this paper are of
circular orbit with eccentricity in the range of 0.00451

to 0.00014 [48]. Accordingly, the analytical
expressions for computing visibility time of circular orbits
are applied. The analytical expression are derived with
respect to the orbital altitude of the satellites. In addition,
the visibility time of satellites are affected by restriction on
the minimum zenith angle. Accordingly, in the analysis,
the models used also accounted for the minimum zenith
angle restriction. In all, the study in this paper presented
the requisite parameters of the case study geodetic
satellites and the analytical models for the visibility time
along with numerical computations based on the case
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study satellite parameters. Also, the visibility time of the
case study satellites are compared for various zenith angle
restrictions.
2. Methodology

2.1 Development of the analytical model for the
visibility time computation

The visibility time is derived with respect to p, which is
the ratio of the earth radius (R,) to the satellite radius (R)
where R; is expressed in terms of orbital altitude or orbital
height (h) and R, as follows;

R5=Re-;h (1)
p=ie O

Consider the diagram for a circular orbit satellite visibility
time with restriction on the minimal zenith angle, ¢, as
shown in Figure 1. The angle for one round trip on the
circular orbit is 27 radians. Without restriction on the
minimum zenith angle (¢), (in Figure 1) the visibility
angle is 2(B;) where;

Re

Cos(By) =2 = =& = p (3)

Re+h
With restriction on the minimum zenith angle (¢), (in
Figure 1) the visibility angle is 2(8,), where;

Cos(B) =22 =22 (4)
Sin(B,) = §§ = (5)
Tan(¢) = &= = = (©6)

Tanl((p) = % ™

(Tan(qz)) Sin(f,) = ( )(%) = % ®)
(Tan((p)) Si (:82) = ow ©

PG
Cos(B) — (m) in(B) = -5, (10
06-pd
Cos(B) — () SInB) = 25 (1)
But from Figure 1,

0G — PG = OP =R, (12)

OW =R, +h (13)

*» Satellite

FTTELLL

Figure 1 The diagram for a circular orbit satellite visibility
time with restriction on the minimal zenith angle, ¢

Hence;
Re

1

= Tan(¢p) (15)
Where
@ =90 —¢ if @and ¢ are in degree (16)
@ = (m/2) — ¢ if @ and ¢ are in radians
(17)
Then,
By =2 (Tan—1 (%jz)‘z)) (18)

Also, the time one round trip on the circular orbit is the
satellite orbital period, T,, where

T, =2n /@ Seconds (19)

The visibility arc angle for the case with restriction on the
minimum zenith angle is 2(B, )radians
The visibility time angle is denoted as At,, , then;
Aty _ 2(B2)

To = 2T (20)

2 Re+h)?
At, = ( (zﬁ;))T - (ﬁTZ) To = (2B2) %Seconds
(2D

At, = <4 <Tan_1( (1+Zz—p2)—Z)>) ’(Re+h)3 Seconds
1+p n

(22)
The satellite visibility time can be expressed in minutes
(denoted as Aty and in hours( denoted as At,;) where ;

Aty (23)

Atymin = 60
24)

Aty
3600

Atyhour =
2.2 The case study satellites
The numerical examples in this paper are presented with
respect to three geodetic satellites, namely; LAGEOS-1 ,
JASON 3 and TANDEM X [48]. The launch details and
some orbital elements of the three satellites are presented
in Table 1. The analytical model for the visibility time
computation in this paper shows that variations in the
visibility time from one satellite to another is mainly
dependent on the orbital altitude or orbital height (h) of the
satellite. Also, it is known from orbital track prediction
data of satellites varies with time. However, the satellite
mean altitude over an orbital period or over a given
timeframe is used to compute the visibility time. The
variations in the mean altitude of the selected satellites are
shown in Figure 1, Figure 2, Figure 3 and Figure 4. The
data on orbital period and orbital altitude of the case study
satellites are presented in Table 2. The data in Table 2
shows that the orbital altitude of the Lageos-1 satellite is
about 11.6 times that of the TanDEM-X satellite while that
of Jason-3 satellite is about 2.6 times the altitude of the
TanDEM-X satellite.

Cos(By) ~ (1) SNB) = g = mz= o (14)
Now, let
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Table 1 The launch details and some orbital elements of
the three geodetic satellites, namely; LAGEOS-1, JASON
3 and TANDEM X Source: [48]

5600.19

Mean altitude (km)

Launch LAGEOS- TANDEM
Details 1 JASON 3 X 5900.18 |- 4
United United PR S | P P P PSR Y L M L.
2019 2020 202 2n2
Owner States States Germany 1 I
NORAD ID 8820 41240 36605 I. FIGURE 1 MEAN ALTITUDE OF LAGEOS-1
2010- SATELLITE
COSPARID 1976-039A | 2016-002A 030A
- T T 1 &% T T T T T
E 1360 |-
Orbital LAGEOS- JASON 3 TANDEM 55"'
elements 1 X £ 1340 -
Inclination 109.861° 66.044° 97.445° g
Eccentricity 0.00451 0.00081 0.00014 : 1320 N - N I B

RA ascending o o ) 2021 202
node 1.551 hr 1.506 hr 8.728 hr Figure 2 Mean altitude of JASON 3 satellite

Argument 264.596° | 273.463° | 110.102°
perihelion :
Mean 153.179° 86.546° 27.029° o
anomaly g8
Orbital 225470 mi | 112.418 mi | 94.790 mi b
period n n n §
02 May = 1 1  WBr- 1 L L
Epoch of 02 May 03 May 2022 T 1n2020  tdul 1dan2021 tdd 1202
osculation 2022,12:52 | 2022,10:14 16'15’ 2019 - 2022

Figure 3 Mean altitude of TANDEM X satellite

Source: [48]
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(3]
> «© LAGEOS 1 JASON-3 TanDEM-X
- . .
Mean orbital altitude (km) of 5917.3 1339.8 516.6

selected geodesic satellites

Figure 4 The mean altitude of the three case study satellites

Table 2 The data on orbital period and orbital altitude of the case study satellites

Orbital altitude, h (km) from | Normalised orbital altitude with
Orbital Orbital altitude, h (km) | the mean orbital altitude data respect to that of TanDEM-X
Geodesic Period, To | from the orbital period in Figure 4 satellite
Satellites (Min) data in Table 1
5917.3 11.5

LAGEOS-1 225.470 5,893.03

JASON-3 112418 1,337.71 1339.8 2.6
TanDEM-X 94.790 508.41 516.6 1
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3. Results and Discussion
The visibility time analysis is conducted using the data on
orbital altitude of the case study satellites as presented in
Table 2. The results of the visibility time computations for
the LAGEOS-1 satellite are shown in Table 3, the results
for JASON-3 satellites are shown in Table 4 and the
results for TanDEM-X satellites are shown in Table 5.
The results show that with minimum zenith angle
restriction value of 0°, the Lageos-1 satellite has the
maximum visibility time of 73.5 minutes along with the
highest visibility angle of 58.7°. The visibility time and
visibility angle of the Lageos-1 satellite drop to 51.1
minutes and 40.8° at minimum zenith angle restriction
value of 20°. The analytical model that relates the
visibility time of Lageos-1 satellite with the minimum
zenith angle restriction in degree is given as;
Lageos-1 Atv = 0.0068¢” - 1.2552¢ + 73.497
(25)

Similar models for the Jason-3 and TanDEM-X satellites
are given as;

Jason-3 Atv = 0.0073¢* - 0.6196¢ + 21.386

TanDEM-X = 0.0086¢ - 0.5033¢ + 11.657

(26)
)

Among the three geodesic satellites considered, TanDEM-
X satellite with the lowest altitude has the lowest visibility
time. However, while the ratio of the orbital altitude of the
Lageos-1 satellite to the altitude of the TanDEM-X
satellite is about 11.6 and that of Jason-3 altitude to
TanDEM-X altitude is about 2.6, the ratio of the visibility
time varies with the minimum zenith angle restriction, as
shown in Table 6 and Figure 8. For the Lageos-1 satellite,
the ratio of the visibility time to that of the TanDEM-X
satellite ranges from 6.3 at minimum zenith angle of 0° to
10.2 at minimum zenith angle of 20°. Also, for the Jason-3
satellite, the ratio of the visibility time to that of the
TanDEM-X satellite ranges from 1.8 at minimum zenith
angle of 0° to 2.4 at minimum zenith angle of 20°.

In all, the results show that the higher the orbital altitude,
the higher the visibility time of the satellite. Also, the
minimum zenith angle restriction significantly affect the
visibility time of the satellite; notably, the visibility time
decreases as the value of minimum zenith angle restriction
increases.

Table 3 The results of the visibility time computations for the LAGEOS-1 satellite

Orbital Minimal Orbital Vis.ibility , Visibility '
Satellite altitude, h Zenlth Apgle Period , Time, Ratioof | Angle, Pe.rc.er.lt.age change in
(km) Restriction , To (Min) At.v To/Atv Atv visibility angle (%)
o(degree) (min) (degree)
LAGEOS-1 | 5893.03 0.0 2255 73.5 0.326 58.7 0.0
LAGEOS-1 | 5893.03 2.0 225.5 71.0 0.315 56.7 3.4
LAGEOS-1 | 5893.03 4.0 225.5 68.6 0.304 54.8 -6.7
LAGEOS-1 | 5893.03 6.0 225.5 66.2 0.294 529 9.9
LAGEOS-1 | 5893.03 8.0 225.5 63.9 0.283 51.0 -13.1
LAGEOS-1 | 5893.03 10.0 225.5 61.6 0.273 49.2 -16.1
LAGEOS-1 | 5893.03 12.0 2255 59.4 0.264 47.4 -19.2
LAGEOS-1 | 5893.03 14.0 225.5 573 0.254 45.7 22.1
LAGEOS-1 | 5893.03 16.0 225.5 55.1 0.245 44.0 -25.0
LAGEOS-1 | 5893.03 18.0 225.5 53.1 0.235 42.4 -27.8
LAGEOS-1 | 5893.03 20.0 225.5 51.1 0.226 40.8 -30.5
Table 4 The results of the visibility time computations for the JASON-3 satellite
. Orbital Zeﬁﬁiiﬁlgle Owbital | Visibility | Ratio | Visibility | b 0o i
Satellite altitude, h Restriction , Perloq , Tlme? Atv of Angle , Atv visibility angle (%)
(km) o(degree) To (Min) (min) To/Atv (degree)
JASON-3 1337.71 0.0 112.4 214 | 0.190 34.2 0.0
JASON-3 1337.71 2.0 112.4 202 | 0.179 323 -5.7
JASON-3 1337.71 4.0 112.4 19.0 | 0.169 30.5 -11.1
JASON-3 1337.71 6.0 112.4 17.9 | 0.159 28.7 -16.2
JASON-3 1337.71 8.0 112.4 16.9 | 0.150 27.1 -21.0
JASON-3 1337.71 10.0 112.4 159 | 0.142 25.5 -25.5
JASON-3 1337.71 12.0 112.4 15.0 | 0.134 24.0 -29.8
JASON-3 1337.71 14.0 112.4 142 | 0.126 227 -33.8
JASON-3 1337.71 16.0 112.4 13.4 | 0.119 214 -37.6
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JASON-3 1337.71 18.0 112.4 126 | 0.112 20.2 -41.1
JASON-3 1337.71 20.0 112.4 11.9 | 0.106 19.0 -44.4
Table 5 The results of the visibility time computations for the TanDEM-X satellite
Orbital Zeﬁi‘ﬁ‘ﬁl lo | Orbital | Visibility | Ratio | Visibility |,
Satellite altitude, h 1 Ang Period, | Time, Atv | of Atv/ | Angle, Atv reentag go
(km) Restriction , To (Min) (min) To (degree) visibility angle (%)
¢o(degree)
TanDEM-X 508.41 0.0 94.8 11.7 ]| 0.123 222 0.0
TanDEM-X 508.41 2.0 94.8 10.7 | 0.112 20.2 -8.6
TanDEM-X 508.41 4.0 94.8 97| 0.103 18.5 -16.5
TanDEM-X 508.41 6.0 94.8 8.9 | 0.094 16.9 -23.7
TanDEM-X 508.41 8.0 94.8 82| 0.086 15.5 -30.1
TanDEM-X 508.41 10.0 94.8 75| 0.079 142 -35.9
TanDEM-X 508.41 12.0 94.8 6.9 | 0.073 13.1 -41.1
TanDEM-X 508.41 14.0 94.8 6.3 | 0.067 12.0 -45.8
TanDEM-X 508.41 16.0 94.8 5.8 | 0.062 11.1 -49.9
TanDEM-X 508.41 18.0 94.8 54| 0.057 10.3 -53.7
TanDEM-X 508.41 20.0 94.8 50| 0.053 9.5 -57.1
100 —e— Visibility Time, Atv (min) for LAGEOS 1
90 —@— Visibility Time, Atv (min) for JASON-3
Visibility Time, Atv (min) for TanDEM-X
80 | e Poly. (Visibility Time, Atv (min) for LAGEOS 1)
E 70
5 60
Lageos-1 Atv = 0.0068¢? - 1.2552¢ + 73.497

B

q 50 RZ = 1

g

§ 40

[

2 Jason-3 Atv = 0.0073¢?2 - 0.6196¢ + 21.386

= 20 2 -

S

2 1 4 :

= anDEM-X = 0.0086¢?2 - 0.5033¢ + 11.657

0 R% = 0.9997
0 2 4 6 8 10 12 14 16 18 20 22

Minimum Zenith Angle Restriction, @ (degree)

Figure 5 The graph of visibility time versus minimum zenith angle restriction for the three geodesic satellites
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Figure 6 The graph of ration of visibility time to orbital period versus minimum zenith angle restriction for the three geodesic
satellites
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Figure 7 The graph of visibility angle versus minimum zenith angle restriction for the three geodesic satellites
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Table 6 The ratio of the visibility time and ratio of orbital altitude with respect to that of the TanDEM-X satellite

Ratio of the visibility time of
Lageos-1 satellite to the
visibility time of the TanDEM-

Ratio of the visibility time of
Jason-3 satellite to the
visibility time of the TanDEM-

Ratio of the orbital altitude of
Lageos-1 satellite to the
altitude of the TanDEM-X

Ratio of the orbital altitude of
Jason-3 satellite to the altitude
of the TanDEM-X satellite

X satellite X satellite satellite
6.3 1.8 11.6 2.6
6.6 1.9 11.6 2.6
7.1 2.0 11.6 2.6
7.4 2.0 11.6 2.6
7.8 2.1 11.6 2.6
8.2 2.1 11.6 2.6
8.6 2.2 11.6 2.6
9.1 2.3 11.6 2.6
9.5 2.3 11.6 2.6
9.8 2.3 11.6 2.6
10.2 2.4 11.6 2.6
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Minimum zenith angle (°)

The ratio of the visibility time and
ratio of orbital altitude with respect

20 6 oo o oo+ ++—8

—e— Ratio of the visibility time of
Lageos-1 satellite to the
visibility time of the TanDEM-X
satellite

—e— Ratio of the visibility time of
Jason-3 satellite to the visibility
time of the TanDEM-X satellite

—@— Ratio of the orbital altitude of
Lageos-1 satellite to the
altitude of the TanDEM-X
satellite

—@— Ratio of the orbital altitude of
Jason-3 satellite to the altitude

20 of the TanDEM-X satellite

Figure 8 The graph of ratio of the visibility time and ratio of orbital altitude as function of minimum zenith angle restriction

4. Conclusion

The visibility time of geodesic satellites is studied. The
study presented the analytical expressions that are used in
the computation of the orbital period as well as the
visibility angle and the visibility time subject to certain
minimum zenith angle. Three case study geodesic satellites
were used in the numerical examples and the results
showed that the higher the orbital altitude, the higher the
visibility time of the satellite. Also, the minimum zenith
angle restriction significantly affect the visibility time of
the satellite; notably, the visibility time decreases as the
value of minimum zenith angle restriction increases.
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