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 Abstract— In this paper, energy level analysis 
for LoRaWAN-based sensor node with solar 
energy harvester and battery storage is presented. 
The energy level analysis entails determination of 
the average current of a sensor node, the required 
battery that can supply energy to the sensor node 
and the solar cell size for the energy harvest. 
Based on these computed parameters, the daily 
energy level of the battery is analyzed to 
determine the daily energy balance for the sensor 
node power supply. Hence, it can be determined 
when there will be power outage in the sensor 
node. The study was conducted using the daily 
solar irradiation for a location in Port Harcourt, 
Rivers State with annual mean value of 4039.5 
W/ 𝒎𝟐 /day. The average current, 𝑰𝑨𝑽𝑮 was 
computed with the following input parameter 
values; 𝑰𝑨𝑪𝑻 = 199.5 mA, 𝒕𝑨𝑪𝑻 ൌ 1.2 s , 𝑰𝑺𝑳𝑷 ൌ 0.0075 
mA and 𝒕𝑺𝑳𝑷 ൌ 10.8 s and the results was 𝑰𝑨𝑽𝑮  = 
19.95675 mA ൎ 𝟐𝟎 𝐦𝐀 . Also, with the following 
parameter values D =3 days, 𝑺𝑩 =1.2 , 𝑪𝒖= 0.9 , 𝑪𝑻 = 
0.95 and Ƞ𝒄  = 0.97, the battery capacity, 
𝑪𝑩 required to power the sensor node was 
computed to be 𝑪𝑩 ൌ 𝟐𝟎𝟖𝟑. 𝟓𝟓𝟗𝟒𝟏𝟒 𝒎𝑨𝒉 ൎ
 𝟐𝟎𝟖𝟒𝒎𝑨𝒉.  Again, with Gt =4039.5 W/ 𝒎𝟐 /day, 
𝒕𝒇 ൌ 𝟐 𝒅𝒂𝒚𝒔, 𝑽𝒔 ൌ 𝟔 𝑽, 𝑺𝒔  =1.2 and Ƞ𝒔 ൌ  𝟎. 𝟏𝟓  the 
energy the solar cell will store in the battery per 
day, 𝑬𝑹=50.016 Wh and the solar cell area that will 
be required for that amount of solar energy 
harvest per day was 𝑨𝒔 ൌ0.012382 𝒎𝟐  ൎ 𝟏𝟐𝟒 𝒄𝒎𝟐. 
The effect of days of autonomy settings on the 
energy balance and power outage in the sensor 
node is also presented. In all, lower days of 
autonomy will increase the percentage of days in 
a year with power outage whereas higher value of 
days of autonomy will reduce the days of power 
outage. However, increasing the days of 
autonomy will increase the required battery 
capacity and also results in higher amount of lost 
energy. As such, optimal selection of the days r 
hours of autonomy, D = 3.132 was selected to 

avoid waste of money in buying higher capacity 
battery that will amount to high amount of energy 
lost. 

Keywords — Solar Energy, Sensor Node, 
Energy Level Analysis, LoRaWAN, Smart City, 
Energy Harvest 

1. Introduction 

Nowadays, the quest for green and smart 
technologies is driving researchers and experts to 
innovate renewables energy-powered solutions that 
support smart applications [1,2,3,4,5,6]. In this wise, 
the wireless communication industry has been at the 
fore front of developing wireless sensor technologies 
that can effectively drive smart solutions 
[7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]]. Such 
technologies as wireless sensor networks have 
already become popular in the terrestrial wireless 
applications and there is now efforts to develop 
satellite-based wireless sensor communication links 
whereby, the low-power sensor nodes can 
communicate directly with the satellite 
[22,23,24,25,26,27,28,29]. The emerging technology 
will greatly fast track deployment of globally 
distributed smart solutions.  

In any case, the key challenges for wireless signal 
includes the diverse signal strength degradation 
mechanisms that tend to attenuate and distort the 
wireless signal as it propagates from the transmitter to 
the receiver [30,31,32,33, 34,35,36,37, 
38,39,40,41,42, 43]. The attenuation problem is also a 
key challenge for wireless sensor networks 
[,44,45,46,47, 48,48,50,51 52,53,54,55,56,57,58] as 
the sensor nodes are in most cases power-
constrained and hence require additional measures to 
sustain the power supply for the required network 
communication range and network lifetime. Also, due 
to certain regional restrictions on the transmission 
power and related parameters of the sensor nodes, 
the possible transmission range of the sensor nodes 
are greatly limited [59,60,61,62,63,64,65]. However, 
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LoRaWAN is one of the most promising long range 
and low power wireless technologies which has been 
employed for different wireless sensor-based 
applications across the globe. Due to its wide 
applications, researchers are developing solutions to 
enhance the performance of LoRaWAN-based 
solutions [66,67,68,69,70,71]. 

In this paper, the focus is on the energy level 
analysis for LoRaWAN-based sensor node with solar 
energy harvester and storage battery 
[72,73,74,75,76]. The study seek to provide means of 
determining at design time the daily energy harvested 
and stored for powering the sensor node in a 
LoRaWAN-based sensor network. The idea is to 
ensure that power outage can be mitigated at the 
design time without oversizing the solar cell and 
storage battery which will amount to excess cost in 
the deployment of the sensor network. This is 
important because, in most cases, the sensor nodes 
are deployed in large numbers and any access cost 
adds up to a substantial amount in the overall network 
deployment cost. In all, the study used a case study 
daily solar irradiation data and other requisite data 
items to demonstrate the applicability of the ideas 
presented in this paper. 

2. Methodology 

The energy level analysis entails determination of 
the average current of a sensor node, the required 
battery that can supply energy to the sensor node and 
the solar cell size for the energy harvest. Based on 
these computed parameters, the energy level of the 
battery is analyzed to determine the daily energy 
balance for the sensor node power supply. Hence, it 
can be determined when there will be power outage in 
the sensor node. The list of parameters used in the 
analysis and their descriptions, symbols and input 
values are presented in Table 1. 

 Table 1 List of parameters and their descriptions, 
symbols and input values 

S/N 
Parameter 

Symbol 
Parameter 
Description 

Parameter 
input value 

1 𝐼஺஼் current in the active 
mode 

199.5 mA 

2 𝑡஺஼் time spent in the 
active mode 

1.2 s 

3 𝐼ௌ௅௉ current in the sleep 0.0075 mA 

4 𝑡ௌ௅௉ 
time spent in the 

sleep mode 
respectively 

10.8 s 

5 𝐼஺௏ீ average current   
6 Ƞ௖ Charge efficiency,  97%  

7 𝐶௨ Useable battery 
capacity  

90% 

8 𝐶் Temperature 
dependent capacity 

95% 

9 D 
Number of days 

without solar 
irradiation  

3 

10 𝑆஻ Battery capacity 1.2 

sizing Safety factor 
11 𝐶஻ Battery capacity,   

12 Gt 
Average daily solar 

irradiation 

4039.5 
W/𝑚ଶ/day 

Obtained from 
the site 
dataset 

13 𝑡௙

Time in days 
required for full 

charge  
 

14 𝑉௦
Solar cell rated 

voltage  
6 v 

15 𝑆௦ Solar cell efficiency 15 % 

16 𝑆௦
Solar cell sizing 

safety factor  
1.2 

17 𝐸ோ
Required solar 

energy  
 

18 𝐴௦
Required solar cell 

area  
 

19 𝐺𝑡௜ 
Daily solar 

irradiation on day i 

Obtained from 
the daily solar 

irradiation 
data of the 
study site 

20 𝐸ோሺ௜ሻ 

Solar energy 
generated by solar 

cell with area 𝐴௦ 
and daily solar 
irradiation , 𝐺𝑡௜ 

 

21 
 

𝐸ோ஽௔௬

Daily energy 
demand from the 
sensor node in 

(Wh) 

 

22 
 

𝐸ோேሺ௜ሻ

Net energy 
produced and 

consumed in day i, 
(Wh) 

 

23 𝐸ோሺி௨௟௟஻௔௧஼௔௣ሻ

Energy stored in 
the battery when 
the battery is fully 

charged (Wh) 

 

    

  

The parameters are computed using the following 
expressions;  

𝐼஺௏ீ ൌ ூೄಽು ሺ௧ೄಽುሻ ା ூಲ಴೅ሺ௧ಲ಴೅ሻ

௧ೄಽುା ௧ಲ಴೅
 (1) 

𝐶஻ ൌ ଶସሺ஽ሻ ሺூಲೇಸሻሺௌಳሻ

ሺ஼ೠሻሺ஼೅ሻሺȠ೎ሻ
 (2) 

𝐸ோ ൌ
஼ಳሺ௏ೞሻሺௌೞሻ

ሺȠೞሻ൫௧೑൯
 (3) 

𝐴௦ ൌ  ாೃ

ୋ୲
 (4) 

𝐸ோሺ௜ሻ ൌ  ሺ𝐴௦ሻ𝐺𝑡௜ , Gt where Gt for i = 0 (5) 

𝐶஻/ௗ௔௬ ൌ ஼ಳ

஽
 (6) 

𝐸ோሺி௨௟௟஻௔௧஼௔௣ሻ ൌ ൫𝐸ோ௦൯൫𝑡௙൯ (7) 
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 3. Results and discussion 

The values in Table 1 are used in the computation 
of the various parameters. Particularly, the average 
current, 𝐼஺௏ீ was computed with the following input 
parameter values; 𝐼஺஼்  = 199.5 mA, 𝑡஺஼் ൌ 1.2 s , 
𝐼ௌ௅௉ ൌ 0.0075 mA and 𝑡ௌ௅௉ ൌ 10.8 s and the results is 
𝐼஺௏ீ = 19.95675 mA ൎ 20 mA. Also, with the following 
parameter values D =3 days, 𝑆஻ =1.2 , 𝐶௨= 0.9 , 𝐶் = 
0.95 and Ƞ௖ = 0.97 the battery capacity, 𝐶஻ required to 
power the sensor node is computed to be 𝐶஻ ൌ
2083.559414 𝑚𝐴ℎ ൎ  2084𝑚𝐴ℎ.  Again, with Gt 
=4039.5 W/𝑚ଶ /day, 𝑡௙ ൌ 2 𝑑𝑎𝑦𝑠, 𝑉௦ ൌ 6 𝑉, 𝑆௦  =1.2 and 
Ƞ௦ ൌ  0.15 the energy the solar cell will store in the 
battery per day, 𝐸ோ=50.016 Wh and the solar cell area 
that will be required for that amount of solar energy 
harvest per day is 𝐴௦ ൌ 0.012382 𝑚ଶ  ൎ 124 𝑐𝑚ଶ . 
Since by the parameters selected, it takes 𝑡௙ ൌ 2 𝑑𝑎𝑦𝑠 
to fully charge the battery, it means, at full charge, the 
battery will store 100.032 Wh of energy. Also, by the 
parameters, the fully charged battery will be able to 
sustain the sensor node for D =3 days, it means that 
the energy required to sustain the sensor node for one 
day is 33.344 Wh (that is 100.032 Wh/D). Essentially, 
the daily energy demand from the battery is 33.344 
Wh. 

The daily solar irradiation, 𝐺𝑡௜ on day i= 1 ,2,3,.,365 
is used to compute 𝐸ோሺ௜ሻ,  (that is, the daily energy 
harvested by the solar cell. Then the daily energy 

stored in the battery is computed and the results are 
plotted along with the daily energy demand, as shown 
in Figure 3. The information in Figure 3 is also 
captured in another form as the net battery stored 
energy with respect to daily energy demand (Wh), as 
shown in Figure 4. The results in Figure 3 and Figure 
4 show that the net battery stored energy with respect 
to daily energy demand is negative in some days or 
put another way, the energy stored in the battery is 
less than the daily energy demand in some days. In 
such days, the sensor node will witness power outage 
or loss of load will occur. The whole year results 
showed that such outage or loss of load will occur in 4 
days out of the 365 days in a year. This gives rise to a 
loss of load probability of 1.095890411 % ൎ 1.1 %. 

While there are few days with shortfall in energy 
from the required daily demand, there are also days 
when the energy harvested is so much that the battery 
is fully charged and there is no place to store the 
excess energy. Such excess energy are unused and 
hence lost. The daily net energy in day i and the 
unused (lost) energy in day I are shown in Figure 5. 
The results showed that there are 245 days of unused 
energy which is 67.12328767 % of the days in a year. 
Also, there are 116 days of unused energy which is 
31.78082192 % of the days in a year. Increasing the 
days of autonomy, D to 3.5 days will reduce loss of 
load or outage days to 0 (zero) but the required 
battery capacity would have increased to 2431 mAh.  

 

Figure 3 The daily energy stored in the battery is computed and the results are plotted along with the daily 
energy demand for 3 days of autonomy (D =3 ) and battery charging duration of 2 days ( 𝑡௙ ൌ 2) 
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Figure 4 Net battery stored energy with respect to daily energy demand (Wh) for 3 days of autonomy (D =3 ) 
and battery charging duration of 2 days ( 𝑡௙ ൌ 2) 

 

Figure 5 Daily net energy in day i (Wh) and unused energy in day i (Wh) for 3 days of autonomy (D =3 ) and 
battery charging duration of 2 days ( 𝑡௙ ൌ 2) 
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Table 2 Summary of the key results of the computation for 3 days of autonomy (D =3 ) and battery 
charging duration of 2 days ( 𝑡௙ ൌ 2) 

S/N Parameter Unit Value 

1 Average current  mA 20.0 

2 Battery capacity required mAh 2084 

3 Solar cell area required cm^2 124 

4 The daily energy demand from the battery Wh 33.344 

5 Energy store in fully charged battery  Wh 100.032 

6 Number of days of power outage  Days 4 

7 Percentage of days of power outage  % 1.1 

8 Number of days of excess energy is unused or lost  Days 245 

9 Percentage of days excess energy is unused or lost  % 67.1 

10 Number of days of excess energy is completely stored Days 116.0 

11 Percentage of days excess energy is completely stored % 31.8 

 

 The results of the same sensor node but for 2 days of autonomy (D =2 ) and battery charging duration of 2 days 
( 𝑡௙ ൌ 2) are shown in Figure 6, Figure 7 and Table 3. In this case, a smaller battery capacity of 1389 mAh is 
required. However, the percentage of days of power outage has increased from 1.1 % to 37.5 % which is about 137 
days of down time in the system. On the other hand, the percentage of days excess energy is unused or lost 
reduced from 67.1 % to 18.4 %.  

  

Figure 6 The daily energy stored in the battery is computed and the results are plotted along with the daily 
energy demand for 2 days of autonomy (D =2 ) and battery charging duration of 2 days ( 𝑡௙ ൌ 2) 

-40
-30
-20
-10

0
10
20
30
40
50
60
70
80

0 50 100 150 200 250 300 350 400

D
ai

ly
 E

ne
rg

y 
 S

to
re

d 
in

 th
e 

B
at

te
ry

  a
nd

 D
ai

ly
 E

ne
rg

y 
D

em
an

d 
 (

W
h)

Day 

Daily Energy  Stored in the Battery, Ei_Updated (Wh)



International Multilingual Journal of Science and Technology (IMJST) 
ISSN: 2528-9810 

Vol. 7 Issue 7, July - 2022 

www.imjst.org 
IMJSTP29120774 5427 

 

Figure 7 Daily net energy in day i (Wh) and unused energy in day i (Wh) for 2 days of autonomy (D = 2 ) and 
battery charging duration of 2 days ( 𝑡௙ ൌ 2) 

Table 3 Summary of the key results of the computation for 2 days of autonomy (D =2 ) and battery 
charging duration of 2 days ( 𝑡௙ ൌ 2) 

S/N Parameter Unit Value 

1 Average current mA 20.0 

2 Battery capacity required mAh 1389 

3 Solar cell area required cm^2 83 

4 The daily energy demand from the battery Wh 33.336 

5 Energy store in fully charged battery Wh 66.672 

6 Number of days of power outage Days 137 

7 Percentage of days of power outage % 37.5 

8 Number of days of excess energy is unused or lost Days 67 

9 Percentage of days excess energy is unused or lost % 18.4 

10 Number of days of excess energy is completely stored Days 161.0 

11 Percentage of days excess energy is completely stored % 44.1 

 

 Similarly, the results of the same sensor node but for 4 days of autonomy (D =4) and battery charging duration 
of 2 days ( 𝑡௙ ൌ 2) are shown in Figure 8, Figure 9 and Table 4. In this case, a larger battery capacity of 2778 mAh 
is required. However, the percentage of days of power outage has decreased from 0 % to 37.5 % which is no day 
of down time in the system. On the other hand, the percentage of days excess energy is unused or lost increased 
from 67.1 % to 82.7 %. In all, the choice of the battery capacity, the solar cell size for the same sensor node will 
significantly affect the energy balance and the power outage in the system. 
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Table 4 Summary of the key results of the computation for 4 days of autonomy (D =4 ) and battery 
charging duration of 2 days ( 𝑡௙ ൌ 2) 

S/N Parameter Unit Value 

1 Average current  mA 20.0 

2 Battery capacity required mAh 2778 

3 Solar cell area required cm^2 165 

4 The daily energy demand from the battery Wh 33.336 

5 Energy store in fully charged battery  Wh 133.344 

6 Number of days of power outage  Days 0 

7 Percentage of days of power outage  % 0.0 

8 Number of days of excess energy is unused or lost  Days 302 

9 Percentage of days excess energy is unused or lost  % 82.7 

10 Number of days of excess energy is completely stored Days 63.0 

11 Percentage of days excess energy is completely stored % 17.3 

 

 

Figure 8 The daily energy stored in the battery is computed and the results are plotted along with the daily 
energy demand for 4 days of autonomy (D =4 ) and battery charging duration of 2 days ( 𝑡௙ ൌ 2) 
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Figure 9 Daily net energy in day i (Wh) and unused energy in day i (Wh) for 4 days of autonomy (D = 4 ) and 
battery charging duration of 2 days ( 𝑡௙ ൌ 2) 

 In order to minimize the excess battery capacity to achieve zero power outage, a graph (Figure 10) is plotted 
for number of days of power outage in a year versus minimal number of days of autonomy (D = 3.132 ) and battery 
charging duration of 2 days ( 𝑡௙ ൌ 2). The zero days of autonomy is obtained with a minimal D of 3.132 days. The 
results of the same sensor node but for 3.132 days of autonomy (D = 3.132) and battery charging duration of 2 
days ( 𝑡௙ ൌ 2) are shown in Figure 11, Figure 12 and Table 5. In this case, a larger battery capacity of 2778 mAh is 
required. However, the percentage of days of power outage has decreased from 0 % to 37.5 % which is no day of 
down time in the system. On the other hand, the percentage of days excess energy is unused or lost increased 
from 67.1 % to 82.7 %. In all, the choice of the battery capacity, the solar cell size for the same sensor node will 
significantly affect the energy balance and the power outage in the system. 

  

Figure 10 Number of days of power outage in a year versus minimal number of days of autonomy (D) and 
battery charging duration of 2 days ( 𝑡௙ ൌ 2) 
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Figure 10 The daily energy stored in the battery is computed and the results are plotted along with the daily 
energy demand for 3.132 days of autonomy (D =3.132 ) and battery charging duration of 2 days ( 𝑡௙ ൌ 2) 

 

Figure 12 Daily net energy in day i (Wh) and unused energy in day i (Wh) for 3.132 days of autonomy (D = 
3.132) and battery charging duration of 2 days ( 𝑡௙ ൌ 2) 

Table 5 Summary of the key results of the computation for 3.132 days of autonomy (D =3.132) and 
battery charging duration of 2 days ( 𝑡௙ ൌ 2) 

S/N Parameter Unit Value 

1 Average current mA 20.0 

2 Battery capacity required mAh 2176 

3 Solar cell area required cm^2 129 

4 The daily energy demand from the battery Wh 33.348659 

5 Energy store in fully charged battery Wh 104.448 

6 Number of days of power outage Days 0 

7 Percentage of days of power outage % 0.0 

8 Number of days of excess energy is unused or lost Days 252 

9 Percentage of days excess energy is unused or lost % 69.0 

10 Number of days of excess energy is completely stored Days 113.0 

11 Percentage of days excess energy is completely stored % 31.0 
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4 Conclusion 

Analysis of the daily energy level in the battery 
storage for sensor node with solar energy harvester is 
presented. The analysis considered the computation 
of various parameters, among which are the average 
current of the sensor node, the required battery 
capacity and the solar panel cell size required to 
harvest the energy and charge the battery. Also, the 
daily energy demand, the daily energy level of the 
battery and the unused (or lost) energy are computed 
along with power outage parameters. The effect of 
days of autonomy settings on the energy balance and 
power outage in the sensor node is also presented. In 
all, lower days of autonomy will increase the 
percentage of days in a year with power outage 
whereas higher value of days of autonomy will reduce 
the days of power outage. However, increasing the 
days of autonomy will increase the required battery 
capacity and also results in higher amount of lost 
energy. As such, optimal selection of the days or 
hours of autonomy is required to avoid waste of 
money in buying higher capacity battery that will 
amount to high amount of energy lost. 
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