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Abstract— The bit error rate (BER) is one of the key
quality of service parameters used for communication
systems. So, in this paper, an approach for computing
the required transmitter power for achieving a
specified BER value for LoRaWAN with its chirp
spread spectrum modulation is presented. The
requisite mathematical expressions for the computation
are also presented. The analysis provided computation
for the operating signal to noise ratio (SNR), the link
margin and the required transmitter power. The
results for bit error rate ranging from BER =10"1 to
BER =10715 show that the spreading factor (SF) of 12
has the lowest values of operating SNR ranging from -
25.2 dBm to -17.3 dBm while the SF of 7 has the
highest range of SNR of -11.5 dBm to -3.5 dBm. Also,
the results show that the SF of 7 required the highest
transmitter power (-7.5 dBm to 1.74 dBm) for each of
the BER while the SF of 12 required the least
transmitter power (- 20 dBm to 0.47 dBm). In all, the
LoRa transceiver operating with SF of 7 requires more
transmitter power to attain a given BER than the
transmitter power it will require when operating with
other SF values. The analysis provides requisite
information for the selection of appropriate spreading
factor and design parameters to achieve a specified
quality of service in sensor networks employing the
LoRa transceiver.
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1. Introduction

Today, it has become obvious that wireless
communication technologies are the backbone of the
emerging smart city applications and other smart solutions
across the globe [1,2,3,4,5,6,7,8]. In this wise, it has been
noted that wireless sensor network are prominent in the
smart solutions [9,10,11,12,13,14]. The design of the
wireless sensor networks involves detailed calculations of
the signal propagation loss, transmitter power requirement,
signal to noise ratio, among other relevant parameter
[15,16,17,18,19, 20,21,22, 23,24,25, 26,27,28,
29,30,31,32].  Also, the communication range of the
sensor network is essential, whether for terrestrial or
satellite-based sensor network [33,34,35,36,37, 38,39,40,
41,42,43,44, 45,46,47,48,49,50,51,52]. Now, as the quest
for more smart solutions increases, there will be
corresponding increase in the demand for higher quality of
service from the supporting wireless networks. It is
therefore important that in the design of the sensor
network, effort is made to accommodate the various
propagation losses in the signal path while at the same
time satisfy the required quality of service.

Among the various quality of service performance
parameters, bit error rate (BER) is popularly used to
indicate the likelihood of error in the received digital
signal [53,54,55,56,57,58,59,60]. Notably, for any given
BER, there is associated required signal to noise ratio
(SNR) and required transmitter power for any given
propagation loss [61,62,63,64,65,66]. In this paper, the
focus is to present analytical approach that will enable
wireless sensor network designers using LoRaWAN
technology to determine at design time the operating
signal to noise ratio (SNR and the required transmitter
power for any specified BER based on the LoRa chirp
spread spectrum modulation technique [67,68,69,71]. The
study also examines how the required SNR and transmitter
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power vary with the spreading factor and BER
specifications. Sample numerical examples are also
presented.

2. Methodology

The bit error probability (BER) of a communication link is
a key quality of service performance parameter which is
computed based on some set of input parameters of the
communication link. However, when the BER of a
communication link is specified, the necessary
communication link parameter values that will be required
to meet the performance specification can be computed in
the reverse order, starting from the BER and working
backwards towards determining the values of the various
input parameters that can be used to achieve the BER.
Now, for LoRaWAN with spreading factor (SF) and

energy per bit to noise power spectral density ratio, Ey / No

the BER is given as;
1 log12(SF)\ ( E|
BER = 5[1 —erf ((—"gljE )( b/NO))] 1)

Where erf is the error function. The task is to determine

the Eb/ N, and hence the operating signal to noise ratio

(SNR). The Ey / N, is determined as follows;

log12(SF)\ ( E
erf ((%)( b/N0)> =1-2(BER) (2)
E __ erfinv(1-2(BER))
( ’/ No) N ®)
vz
Also
E 4
T = SNR —1010g1o(SF) — 10logs (=) +
10log;o(2°7) (4
Hence, for the given fv—b the operating SNR is computed
0
as;
SNR =2 + 1010g;4(SF) + 10logyo () -
0
10log;o(2°7)  (5)
The link margin, LM is given as

LM = fv—‘; +10108,0(SF) + 1010g; () -

1010g;o(2%F) — SNRgqp (7)

Where SNRpgqp is the required signal to noise ratio and it

is always specified for the LoRa along with the sensitivity
value for different spreading factors, as shown in Table 1.

Table 1 The required signal to noise ratio (SNR) and sensitivity of LoRa transceiver operating in 125 kHz bandwidth and with
different spreading factors

SF, Spreading Factor Required SNRgop (dBm) for BW of 125 KHz Sensitivity (dBm)
7 -7.5 -124.5
8 -10 -127.0
9 -12.5 -129.5
10 -15 -132.0
11 -17.5 -134.5
12 -20 -137.0
In accordance with link budget equation, the received Py = LM + S1ora + Lpathmax (14)
signal strength (B.,) is given in terms of link margin and Poy = LM + S;opa — Stora = LM (15)
receiver sensitivity (S;,r,) and also in terms of transmitter P, = ’va_b +101log,,(SF) + 10logy, (ﬁ) —
power (S;orq) and pathloss (Lpgep) as follows: 0 SF n
Prx =LM + SLoRa (8) 10 10g10(72 ) - SNRRQD (16)
Py = Piy + Gop + Gry — Logrn ) The LoRa datasheet specification indicates that the

Where G;,and G,., are the transmitter and receiver
antenna gain. Hence,

Piy = By — Gy — Gry + Lpaen (10)

Py = LM + Spora + Lpatn (11

In this study, G, = G, = 0. In this paper we considered
the pathloss value for two different cases.
Case I : The case of maximum pathloss that is
attainable with zero link margin and 0 dB
transmitter power
The first is the case of maximum pathloss that is attainable
with zero link margin and 0 dB transmitter power. In this
case, the different SF has different pathloss. In that case,
By = SLora and

transmission power of SX1272/73 transceiver ranges from
-1 dBm to 20 dBm [71]. In essence, any P;, value obtained
in Eq 16 that is outside the ranges from -1 dBm to 20
dBm is not supported by the SX1272/73 transceiver. In

this paper, the value of BER and hence the resultant fv—b is
0

varied and also computed for different SF and the
transmitter power range that can be used to satisfy the
BER specification is determined.

Case II : The case of the same pathloss for the
different spreading factors

In this case, a given pathloss is selected, and it is denoted
as Lpgenrix- Then, the required transmitter power is given
as;

Lpgthmax = Pex + Gex + Grx — By (12) P = LM + S;opa + Lpathrix 17)
Lpathmax = — Siora (13)
Hence,
IMJSTP29120773 5413
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Pox = 2+ 1010g;0(SF) + 10logyo (1) —

4+n

1010g1(25F) = SNRgop + Siora + Lpathrix (18)

3. Results and discussions

Some numerical examples are considered in the study. The
results in Table 2 show the operating SNR for LoRa
transceiver operating at different spreading factor (SF) and

for different bit error rate ranging from BER =10"1 to
BER =10715. mong the 5 different SF values, SF of 12
has the smallest value of operating SNR. This means that
the transceiver operating at SF of 12 can operate at lower
signal levels and with lower transmitter power than in the
other SF values.

Table 2 The results of the operating SNR for LoRa transceiver operating at different spreading factor (SF) and for different bit

error rate
SNR SNR
SNR (dBm) | (dBm)
SF, (dBm) for for for SNR (dBm) | SNR (dBm) SNR (dBm)
Spreading BER BER BER for for for BER
Factor =101 =103 | =107° | BER=10"° | BER=10"'? | BER=10"'5
7 -11.5 -7.6 -5.8 -4.7 -4.1 -3.5
8 -14.2 -10.3 -8.5 -7.5 -6.8 -6.2
9 -16.9 -13.1 -11.2 -10.2 -9.5 -9.0
10 -19.7 -15.8 -14.0 -13.0 -12.3 -11.7
11 -22.4 -18.6 -16.7 -15.7 -15.0 -14.5
12 -25.2 -21.4 -19.5 -18.5 -17.8 -17.3
-2
4 8 9 10 11 12
—_ 6
E 3
2 1o —e— SNR (dBm) for BER =104-2
S .
QZ: 12 —e— SNR (dBm) for BER =107-3
‘;JD -14 SNR (dBm) for BER =10%--6
£ 16 —e— SNR (dBm) for BER =107-9
(1
5 -18 —o— SNR (dBm) for BER =10*-12
g -20
)
22
-24
-26
SF

Figure 1 The operating SNR for LoRa transceiver operating at different spreading factor (SF) and for different bit error rate

3.1 Results for Case I : The case of maximum pathloss
that is attainable with zero link margin and
0 dB transmitter power.

The results of the required SNR, the transceiver

sensitivity, the operating Eb/No, SNR and link margin are

shown in Table 3 and Figure 2 for BER = 1 x107%. The

required transmitter power for a given pathloss for the

various spreading factors are also shown in Table 3 and

Figure 3. Also, the required transmitter power for LoRa
transceiver operating at different spreading factor (SF) for
different bit error rate ranging from BER =10~ to BER
=10715 are shown in Figure 4 and Table 4. The results
show that the SF of 7 required the highest transmitter
power in each of the BER while the SF of 12 required the
least transmitter power.

Table 3 The results of the required SNR, the transceiver sensitivity, the operating Eb/No, SNR and link margin for BER =1
x10796
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SF, Required SNRrqd Operating Link Transmitter
Spreading | (dBm) for BW of Sensitivity Eb/No SNR Lpathloss | Margin power
Factor 125 KHz (dBm) (dBm) (dBm) (dB) (dBm) (dBm)
7 -7.5 -124.5 7.83 -5.76 124.5 1.74 1.74
8 -10 -127.0 7.54 -8.48 127.0 1.52 1.52
9 -12.5 -129.5 7.30 -11.21 129.5 1.29 1.29
10 -15 -132.0 7.10 -13.97 132.0 1.03 1.03
11 -17.5 -134.5 6.92 -16.74 134.5 0.76 0.76
12 -20 -137.0 6.77 -19.53 137.0 0.47 0.47
6 —8— Required SNRrqd (dBm) for BW of 125 KHz
4 —&— Operating SNR (dBm)
2 e o > p
O hd -
2 7 8 9 10 12
— 4
E -6
S -8
a4
= -10
w12
-14
-16
-18
-20
-22
SF

Figure 2 The required SNR , operating SNR and link margin for LoRa transceiver operating at different spreading factor (SF)
and for bit error rate, BER = 1 x107°¢
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Figure 3 The required transmitter power for LoRa transceiver operating at different spreading factor (SF) and for bit error rate,

BER =1 x107°¢
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Table 4 The required transmitter power for LoRa transceiver operating at different spreading factor (SF) for different bit error
from BER =10~ to BER =10715.

rate rangin,

Ptx Ptx
(dBm) | (dBm)

SF, Ptx (dBm) | for for Ptx (dBm) | Ptx (dBm) | Ptx (dBm)
Spreading | for  BER | BER BER for for for BER
Factor =101 =103 | =107® | BER=10"° | BER=10"12 | BER=10"1°
7 -3.95 -0.13 1.74 2.75 3.44 3.97
8 -4.17 -0.35 1.52 2.53 3.23 3.75
9 -4.41 -0.59 1.29 2.29 2.99 3.51
10 -4.66 -0.84 1.03 2.04 2.73 3.26
11 -4.94 -1.11 0.76 1.77 2.46 2.99
12 -5.22 -1.40 0.47 1.48 2.17 2.70

4.5

3.5
g 15
= = —e— Ptx (dBm) for BER =10-2
E 0.5 —e— Ptx (dBm) for BER =10-3
g -0.5 ?\g\.\w\l’l\iz Ptx (dBm) for BER =107--6
S .15 —e— Ptx (dBm) for BER =104-9
g s —o— Ptx (dBm) for BER =10/-12
E -3.5
=
1]
St
=

-5.5

SF

- ’\‘\‘\'\’\.

Table 4 The required transmitter power for LoRa transceiver operating at different spreading factor (SF) for different bit error
rate ranging from BER =10"1 to BER =10715.

3.2 Results for Case II : The case of the same pathloss
for the different spreading factors

The results of required transmitter power for LoRa

transceiver operating at different spreading factor (SF) for

a fixed pathloss of 137.0 dB and different bit error rate

ranging from BER =10"! to BER =10715 are shown in

Figure 5 and Table 5. Again, the results show that the SF

of 7 required the highest transmitter power in each of the
BER while the SF of 12 required the least transmitter
power. In all, the LoRa transceiver operating with SF of 7
requires more transmitter power to attain a given BER than
the transmitter power it will require when operating with
other SF.

Table 5 The results of required transmitter power for LoRa transceiver operating at different spreading factor (SF) for a fixed
pathloss of 137.0 dB and different bit error rate ranging from BER =10"! to BER =10715

Ptx Ptx
(dBm) | (dBm)
SF, Ptx (dBm) for for Ptx (dBm) Ptx (dBm) Ptx (dBm)
Spreading for BER BER BER for for for BER
Factor =107t =10"% | =107° | BER=10"° | BER=10"1? | BER=10"1%°
8.55 12.37 14.24 15.25 15.94 16.47
8 5.83 9.65 11.52 12.53 13.23 13.75
3.09 6.91 8.79 9.79 10.49 11.01
10 0.34 4.16 6.03 7.04 7.73 8.26
11 -2.44 1.39 3.26 4.27 4.96 5.49
12 -5.22 -1.40 0.47 1.48 2.17 2.70
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Figure 5 The results of required transmitter power for LoRa transceiver operating at different spreading factor (SF) for a
fixed pathloss of 137.0 dB and different bit error rate ranging from BER =107! to BER =10715

4. Conclusion

An approach for computing the operating signal to noise
ration and transmitter power of LoRa transceiver operating
at different bit error rate is presented. The requisite
mathematical expressions for the computation are also
presented. The essence of the study is to determine the
transmitter power requirement for achieving a given bit
error rate performance in LoRa transceiver. Also,
comparison is made on the transmitter power requirement
for the same transceiver operating in different spreading
factors. The analysis provides requisite information for
selection of appropriate spreading factor and design
parameters to achieve a specified quality of service in
sensor networks employing the LoRa transceiver.
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