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Abstract— This paper presented the development of a 
fuzzy logic-based mechanism for enhancement of 
power generation system stability. The fuzzy logic 
controller is used for damping low frequency electro-
mechanical oscillations in power generation systems. 
Then the fuzzy logic controller-based power system 
stabilizer is introduced by taking speed deviation and 
acceleration of synchronous generator as the input 
signals to the fuzzy controller and voltage as the output 
signal. The power system stabilizer was simulated in 
Mathlab software for three different cases, one, 
without a controller , two with a fussy logic controller 
(FLC) and three, with a proportional integral 
derivative (PID) controller. The results showed that the 
system was stabilized better with FLC (with peak time 
of 0.32secs) than with PID controller (with peak time 
value of 0.38secs) and without the fuzzy controller 
(with peak time value of 0.41secs. In comparison, the 
results obtained in this dissertation are in good 
agreement with existing study where the Static Var 
Compensator  (SVC ) system was used n the power 
system stabiliser. In that study,   the results showed a 
good performance with higher settling time criterion of 
0.5s at the firing angle of 180o.  Again, with the FLC 
presented in this work, the  settling time was 0.38s 
which was the lowest settling time among the  various 
systems with  different controllers considered in this 
study. 
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Controller, Power Generation, Proportional 
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1.  Introduction 

Power system generations are subjected to low frequency 
disturbance that might cause loss of synchronism and an 
eventual break down of the entire power generation system 
[1,2]. The oscillations, which are typically in the frequency 
range of 0.2 to 3.0 Hz, might be excited by the disturbance 
in the system or in some cases might even build up 
spontaneously [3]. Some of the earliest power system 
stability problems included spontaneous power system 
oscillations at low frequencies [4,5,6]. These low 
frequency oscillations (LFOs) are related to the small 
signal stability of a power system and are detrimental to 

the goals of maximum power transfer and power system 
security [7,8,9,10]. Once the solution of using damper 
windings on the generator rotors and turbines to control 
these oscillations was found to be satisfactory, the stability 
problem was thereby disregarded for some time. However, 
as power systems began to be operated closer to 
their stability limits, the weakness of a synchronizing 
torque among the generators was recognized as a major 
cause of system instability. Automatic voltage regulators 
(AVRs) helped to improve the steady-state stability of the 
power systems [11,12,13,14,15]. But with the creation of 
large, interconnected power systems, another concern was 
the transfer of large amounts of power across extremely 
long transmission lines. The addition of a supplementary 
controller into the control loop, such as the introduction of 
conventional power system stabilizers (CPSS)  [16,17] and  
the Automatic voltage regulators (AVRs) 
[11,12,13,14,15]on the generators provides the means to 
reduce the inhibiting effects of low frequency oscillations. 
The conventional power system stabilizers work well at 
the particular network configuration and steady state 
conditions for which they were designed. Once conditions 
change the performance degrades. The conventional power 
system stabilizer such as lead-lag, proportional integral 
(PI) power system stabilizer and proportional integral 
derivative (PID) power system stabilizer operates at a 
certain point. So,  the disadvantage of these types of 
stabilizer is that they cannot operate under different 
disturbances. This can be overcomed by introducing a 
power system stabilizers (PSS)  that is based on the fuzzy 
logic technique. So, there is a need to understudy power 
system generation stability using the Fuzzy Logic 
Controller (FLC) for enhancement of the system stability. 
Hence, this study seeks to enhance power generation 
system stability using the fuzzy logic technique.  

2.  Methodology 
 The case study is a 175MVA electrical power generation 
plant located at phase II Geregu, Ajoakuta, Kogi State.  
Then base on the empirical data, fuzzy logic model was 
developed for the power system stability. Also, 
MATHLAB software was used to simulate the fuzzy logic 
controller model to determine the stability of the power 
system generation settling parameter. The performance of 
the system with fuzzy logic controller is compared with 
the system that does not employ any stabilizer.  
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Figure 3: SIMULINK block diagram with the controller. 

 
2.2 The Fuzzy Logic Controller 

MATLAB’s fuzzy logic toolbox was used to 
model the fuzzy logic controller (FLC) for stabilizing the 
power system. The block diagram in Figure  4 illustrates 
the procedures of modelling the fuzzy logic controller with 
MATLAB. 

The design starts with assigning the mapped 
variables inputs/output of the FLC. The first input variable 
to the FLC is the generator speed deviation and the second 
is the acceleration while the output variable is the voltage, 
as shown in Figure 5.  

 

 
Figure 4: The flowchart used to model the fuzzy logic controller with MATLAB 
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4 Conclusion 
In this paper the effectiveness of power system 

generation stabilizer in damping power system generation 
stabilizer is reviewed. Then the fuzzy logic controller-
based power system stabilizer is introduced by taking 
speed deviation and acceleration of synchronous generator 
as the input signals to the fuzzy controller and voltage as 
the output signal. According to the results obtained, in 
terms of settling time and damping effect, the fuzzy logic 
based power system stabilizer (FLPSS) showed better 
control performance than the other power system 
generation stabilizers such as the PID controller and the 
traditional techniques that are based on linear controllers. 
Therefore, it can be concluded that the performance of the 
FLPSS presented in this study is better than conventional 
PSS. However, the choice of membership functions has an 
important bearing on the damping of oscillations. From the 
simulation studies, it shows that the oscillations are more 
pronounced in the case of trapezoidal membership 
functions. The response with trapezoidal membership 
functions is comparable to triangular membership 
functions. However, the performance of FLPSS with 
triangular membership functions is superior compared to 
other membership functions. 
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