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Abstract— In this paper, the computation of the 
visibility time for highly eccentric tundra orbit 
satellites with restriction on the minimum elevation 
angle is presented. The Study considered four satellites 
in the tundra orbit category, namely;  COSMOS 2546, 
COSMOS 2541, COSMOS 2518 and COSMOS 2510. 
The orbital altitude and eccentricity for each of the 
four satellites were used to determine the orbital period 
and hence the orbital visibility time for different 
minimum elevation angle ranging from 0° to 12°. The 
results showed that the visibility time increases with 
increase in eccentricity of the orbit. Hence, with  0° 
minimum elevation angle, COSMOS 2546 satellite with 
the least eccentricity of 0.668 has the lowest visibility 
time of 10.666 hours per orbital period of 11.970 hours 
which gives 89.108 % of visibility time with respect to 
its orbital period. On the other hand, COSMOS 2518 
satellite with the highest eccentricity of 0.704 has the 
highest visibility time of 10.864 hours per orbital 
period of 11.968 hours which gives 90.864 % of 
visibility time with respect to its orbital period. Again, 
the results of the visibility time of the four tundra orbit  
satellites (COSMOS 2546, COSMOS 2541, COSMOS 
2518 and COSMOS 2510) considered in the study for 
the case  of minimum elevation angle ranging from 0° 
to 12° show that the visibility time decreases with 
increase in the minimum elevation angle restriction.  
For instance, for the COSMOS 2546 satellite, the 
visibility time decreased from 10.666 hours at 
minimum elevation angle restriction of 0° to visibility 
time of 9.244 hours at minimum elevation angle 
restriction of 12°. In all, the Results showed that the 
visibility time increases with increase in eccentricity 
but the visibility time decreases with increase in the 
minimal elevation angle restriction.  
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1.  Introduction 
Today, satellites are deployed for diverse applications, 
among them are weather forecasting, radio and TV 
broadcast, military operations, navigation, global 
telephone backbones, global mobile communication and 
other emerging forms of applications 
[1,2,3,4,5,6,7,8,9,10].  The satellites are launched into 
orbit and they communicate with earth stations and other 
satellites from their orbits. The specific nature of satellite 
and the specific nature of their orbits depends among other 
things on their specific application and the region of the 
earth they are meant to cover [11,12, 13,14, 15,16, 17,18]. 
For instance, geo-stationary orbit satellite orbits the earth 
at an altitude of about 35,800 kilometers and are located 
directly above the equator thereby covering the regions 
around the equator [19,20,21,22,23]. Such satellite does 
not cover the polar and the high-latitude regions [24, 
25,26,27,28,29,30]. In such case, the satellite is never 
visible to people or earth stations in such region. As such, 
different orbit is required for effective coverage of the 
polar and the high-latitude regions 
[31,32,33,34,35,36,37,38,39,40,41]. 
One of such orbits targeted at coverage of the polar and the 
high-latitude regions is the Tundra orbit. Tundra orbit is a 
form of orbit that is geosynchronous and at the same time 
highly elliptical; it also has high inclination (of about 
63.4°) [41,42,43,44,45,46,47]. The satellites operating in 
Tundra orbits have apogee dwell that makes them suitable 
for communication in the high-latitude regions [48,49, 
50,51, 52,53,54,55,56]. The Tundra orbit was originally 
used by Russia for missile early warning satellites 
[57,58,58,60]. In this paper, the focus is on the 
determination of the visibility time of the tundra orbit 
satellite to the earth stations. The visibility time defines the 
amount of time in each orbital period to which an earth 
station can see and hence communicate with the satellite in 
orbit [61,62,63,64,65,65]. In view of the fact that Tundra 
orbits are highly eccentric, the visibility computation is 
highly dependent on the orbital eccentricity. The 
mathematical expressions are presented and four Tundra 
orbit satellites, namely; COSMOS 2546, COSMOS 2541, 
COSMOS 2518 and COSMOS 2510 [67,68] are used for 
numerical examples. 
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Figure 6 The graph of orbital eccentricity versus time for Tundra orbit satellite (COSMOS 2510) as presented by in-the-sky.org 
3. Results and Discussion 
The results of the visibility time of the four Tundra orbit 
satellites (COSMOS 2546, COSMOS 2541, COSMOS 
2518 and COSMOS 2510) considered in the study for the 
case of 0° minimum elevation angle are in Table 3 and 
Figure 7, Figure 8 and Figure 9.  The results showed that 
the visibility time increases with increase in eccentricity of 
the orbit. Hence, COSMOS 2546 satellite with the least 
eccentricity of 0.668 has the lowest visibility time of 

10.666 hours per orbital period of 11.970 hours which 
gives 89.108 % of visibility time with respect to its orbital 
period. On the other hand, COSMOS 2518 satellite with 
the highest eccentricity of 0.704 has the highest visibility 
time of 10.864  hours per orbital period of 11.968 hours 
which gives 90.864 % of visibility time with respect to its 
orbital period. 

 

 
Table 3 The results of the visibility time of the four Tundra orbit satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518 

and COSMOS 2510) considered in the study for the case of 0° minimum elevation angle 

COSMOS satellite 
Orbital Altitude, h  (km) 

COSMOS Satellite  
Eccentricity, e 

COSMOS satellite 
Orbital Period, To 

(hour)  

COSMOS satellite  
visibility time in 

hour 

Percentage of visibility 
time per period (%) 

20,187.300 0.668 11.970 10.666 89.108 

20,168.300 0.675 11.957 10.693 89.432 

20,188.500 0.701 11.971 10.851 90.651 

20,185.100 0.704 11.968 10.864 90.775 
 

 
Figure 7  The bar chart of the results of the visibility time, orbital period, and eccentricity of the four Tundra orbit  satellites 

(COSMOS 2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the case  of 0° 
minimum elevation angle 
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Figure 8   The graph of the visibility time and orbital period verses eccentricity for the four Tundra orbit satellites (COSMOS 

2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the case  of 0° minimum 
elevation angle 

 

 
Figure 9   The graph of the percentage of visibility time per orbital period verses eccentricity for the four Tundra orbit satellites 

(COSMOS 2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the case  of 0° 
minimum elevation angle 

Again, the results of the visibility time of the four Tundra 
orbit  satellites (COSMOS 2546, COSMOS 2541, 
COSMOS 2518 and COSMOS 2510) considered in the 
study for the case  of minimum elevation angle ranging 
from 0° to 12° are in Table 4 and Figure 10.  The results 
show that the visibility time decreases with increase in the 
minimum elevation angle restriction.  For instance, for the 
COSMOS 2546 satellite, the visibility time decreased from 
10.666 hours at minimum elevation angle restriction of 0° 
to visibility time  of 9.244 hours at minimum elevation 
angle restriction of 12°.  
Also, the results of the percentage of visibility time per 
orbital period of the four Tundra orbit  satellites 

(COSMOS 2546, COSMOS 2541, COSMOS 2518 and 
COSMOS 2510) considered in the study for the case  of 
minimum elevation angle ranging from 0° to 12° are in 
Table 5, Figure 11 and Figure 12.  The results show that 
the percentage of visibility time per orbital period 
decreases with increase in the minimum elevation angle 
restriction.  For instance, for the COSMOS 2546 satellite, 
the percentage of visibility time per orbital period 
decreased from 89.108 % at minimum elevation angle 
restriction of 0°  to a value of 77.227 % at minimum 
elevation angle restriction of 12°.  
 

Table 4  The results of the visibility time of the four Tundra orbit  satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518 
and COSMOS 2510) considered in the study for the case  of minimum elevation angle ranging from 0° to 12° 
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Satellite Name 
COSMOS Satellite  

Eccentricity, e 

COSMOS 
satellite  

visibility time in 
hour, Emin =0° 

COSMOS 
satellite  

visibility time in 
hour, Emin =4° 

COSMOS 
satellite  

visibility time in 
hour, Emin =8° 

COSMOS 
satellite  

visibility time in 
hour, Emin =12° 

COSMOS 2546 0.66799 10.666 10.192 9.718 9.244 

COSMOS 2510 0.67486 10.693 10.218 9.743 9.267 

COSMOS 2541 0.70126 10.851 10.369 9.887 9.405 

COSMOS 2518 0.70399 10.864 10.381 9.898 9.416 
 

 
Figure 10  The graph of the percentage of visibility time per orbital period verses eccentricity for the four Tundra orbit  

satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the 
case  of minimum elevation angle ranging from 0° to 12° 

Table 5  The results of the percentage of visibility time per orbital period of the four Tundra orbit  satellites (COSMOS 2546, 
COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the case  of minimum elevation 

angle ranging from 0° to 12° 
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Percentage of 
visibility time per 

orbital period 
(%), Emin =8° 

Percentage of 
visibility time per 

orbital period 
(%), Emin =12° 

COSMOS 2546 0.66799 89.108 85.147 81.187 77.227 

COSMOS 2510 0.67486 89.432 85.457 81.482 77.508 

COSMOS 2541 0.70126 90.651 86.622 82.593 78.564

COSMOS 2518 0.70399 90.775 86.740 82.706 78.672
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Figure 11  The graph of the percentage of visibility time per orbital period verses eccentricity for the four Tundra orbit  

satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the 
case  of minimum elevation angle ranging from 0° to 12° 

 

 
Figure 12  The bar chart of the eccentricity and fraction of visibility time relative to orbital  period for the four Tundra orbit  

satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the 
case  of 0° minimum elevation angle 

 
4.  Conclusion 
The commutation visibility time of four highly eccentric 
tundra orbit satellites is presented. The computation 
examined the impact of the minimal elevation angle on the 
visibility time. Also, the variation of the satellite visibility 
time with the eccentricity of the orbit is considered. The 
Results showed that the visibility time increases with 

increase in eccentricity but the visibility time decreases 
with increase in the minimal elevation angle restriction. 
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