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Abstract— 1In this paper, the computation of the
visibility time for highly eccentric tundra orbit
satellites with restriction on the minimum elevation
angle is presented. The Study considered four satellites
in the tundra orbit category, namely; COSMOS 2546,
COSMOS 2541, COSMOS 2518 and COSMOS 2510.
The orbital altitude and eccentricity for each of the
four satellites were used to determine the orbital period
and hence the orbital visibility time for different
minimum elevation angle ranging from 0° to 12°. The
results showed that the visibility time increases with
increase in eccentricity of the orbit. Hence, with (°
minimum elevation angle, COSMOS 2546 satellite with
the least eccentricity of 0.668 has the lowest visibility
time of 10.666 hours per orbital period of 11.970 hours
which gives 89.108 % of visibility time with respect to
its orbital period. On the other hand, COSMOS 2518
satellite with the highest eccentricity of 0.704 has the
highest visibility time of 10.864 hours per orbital
period of 11.968 hours which gives 90.864 % of
visibility time with respect to its orbital period. Again,
the results of the visibility time of the four tundra orbit
satellites (COSMOS 2546, COSMOS 2541, COSMOS
2518 and COSMOS 2510) considered in the study for
the case of minimum elevation angle ranging from 0°
to 12° show that the visibility time decreases with
increase in the minimum elevation angle restriction.
For instance, for the COSMOS 2546 satellite, the
visibility time decreased from 10.666 hours at
minimum elevation angle restriction of 0° to visibility
time of 9.244 hours at minimum elevation angle
restriction of 12°. In all, the Results showed that the
visibility time increases with increase in eccentricity
but the visibility time decreases with increase in the
minimal elevation angle restriction.
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1. Introduction

Today, satellites are deployed for diverse applications,
among them are weather forecasting, radio and TV
broadcast, military operations, navigation, global
telephone backbones, global mobile communication and
other emerging forms of applications
[1,2,3,4,5,6,7,8,9,10]. The satellites are launched into
orbit and they communicate with earth stations and other
satellites from their orbits. The specific nature of satellite
and the specific nature of their orbits depends among other
things on their specific application and the region of the
earth they are meant to cover [11,12, 13,14, 15,16, 17,18].
For instance, geo-stationary orbit satellite orbits the earth
at an altitude of about 35,800 kilometers and are located
directly above the equator thereby covering the regions
around the equator [19,20,21,22,23]. Such satellite does
not cover the polar and the high-latitude regions [24,
25,26,27,28,29,30]. In such case, the satellite is never
visible to people or earth stations in such region. As such,
different orbit is required for effective coverage of the
polar and the high-latitude regions
[31,32,33,34,35,36,37,38,39,40,41].

One of such orbits targeted at coverage of the polar and the
high-latitude regions is the Tundra orbit. Tundra orbit is a
form of orbit that is geosynchronous and at the same time
highly elliptical; it also has high inclination (of about
63.4°) [41,42,43,44,45,46,47]. The satellites operating in
Tundra orbits have apogee dwell that makes them suitable
for communication in the high-latitude regions [48,49,
50,51, 52,53,54,55,56]. The Tundra orbit was originally
used by Russia for missile early warning satellites
[57,58,58,60]. In this paper, the focus is on the
determination of the visibility time of the tundra orbit
satellite to the earth stations. The visibility time defines the
amount of time in each orbital period to which an earth
station can see and hence communicate with the satellite in
orbit [61,62,63,64,65,65]. In view of the fact that Tundra
orbits are highly eccentric, the visibility computation is
highly dependent on the orbital eccentricity. The
mathematical expressions are presented and four Tundra
orbit satellites, namely; COSMOS 2546, COSMOS 2541,
COSMOS 2518 and COSMOS 2510 [67,68] are used for
numerical examples.
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2. Methodology

Tundra orbit is a type of highly eccentric elliptical orbit.
The diagram for modelling the satellite visibility time of a
Tundra orbit with restriction on the minimal elevation
angle above the horizon is shown in Figure 1 [69]. In this
case of satellite with highly eccentric elliptical orbit, the
visibility time ( Atyy ) can be determined from the
knowledge of the eccentricity, e of the orbit and the orbital
period, T,. First, the mean anomaly denoted as M(B,) is
estimated from the eccentricity as follows [69];

Me) =2 (tan—l ( \E;;)) ~(e(Va=en))m

Then, the visibility time (Atyy) is given as [69];
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If a limit of &,,;,, is placed on the minimum elevation
angle, then, the visibility time window for the satellite is
reduced by a factor given as,[70]}
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Figure 1 The diagram for satellite visibility time of a highly eccentric elliptical orbit with restriction on the minimal elevation
angle above the horizon [69]

3. The Case Study Satellite

Tundra orbit is a form of orbit that is geosynchronous and
at the same time highly elliptical; it also has high
inclination (of about 63.4°). The satellites with Tundra
orbit are considered in this study. The four satellites in that
category are COSMOS 2546, COSMOS 2541, COSMOS
2518 and COSMOS 2510, and some of the orbital
parameters are presented in Table 1. The simulated orbit
tracks of the four Tundra orbit satellites (COSMOS 2546,
COSMOS 2541, COSMOS 2518 and COSMOS 2510)
considered in the study as presented by Satellite Catalog
(SATCAT) [69] are shown in Figure 2.

The ground footprint and orbit track for the Tundra orbit
satellite (COSMOS 2510) as presented by www.n2yo.com

online satellite tool T presented in Figure 3 while the
history of some orbital elements for the Tundra orbit
satellite (COSMOS 2510) as presented by in-the-sky.org
for the period from 19th of February 2022 to 18th of
March 2022 is presented in Table 2 . The graph of mean
orbital altitude versus time for Tundra orbit satellite
(COSMOS 2510) as presented by in-the-sky.org is
presented in Figure 4. Also, the graph of orbital inclination
versus time for Tundra orbit satellite (COSMOS 2510) as
presented by in-the-sky.org is presented in Figure 5. In
addition, the graph of orbital eccentricity versus time for
Tundra orbit satellite (COSMOS 2510) as presented by in-
the-sky.org is presented in Figure 6.

Table 1 The requisite orbital details for the four Tundra orbit satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518 and
COSMOS 2510) considered in the study

IMIJSTP29120770

Parameter COSMOS COSMOS COSMOS COSMOS
2546 2541 2518 2510
Inclination 63.327° 63.337° 63.074° 62.828°
Eccentricity 0.66799 0.70126 0.70399 0.67486
RA ascending node 15.361 hr 21.169 hr 6.651 hr 11.923 hr
Argument perihelion 268.174° 270.245° 265.687° 270.805°
Mean anomaly 154.878° 311.791° 147.149° 18.735°
Orbital period 717.892 min 717.944 min 717.804 min 717.123 min
Semi major axis 26558 km 26560 km 26556 km 26539 km
Min Altitude 2446.5 km 1563.4 km 1489.8 km 2257.9 km
Mean Altitude 20187.3 km 20188.5 km 20185.1 km 20168.3 km
Peak Altitude 37928.0 km 38813.7 km 38880.4 km 38078.7 km
WWWw.imjst.org
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I Kosmos 2510 - Kosmos 2518 - || Kosmos 2541 - || Kosmos 2546 - I Earth
Figure 2 The simulated orbit tracks of the four Tundra orbit satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518 and
COSMOS 2510) considered in the study as presented by Satellite Catalog (SATCAT) Data source [69]
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Figure 3 The ground footprint and orbit track for the Tundra orbit satellite (COSMOS 2510) as presented by www.n2yo.com
online satellite tool. Source [71

Table 2 History of some orbital elements for the Tundra orbit satellite (COSMOS 2510) as presented in-the-sky.org for the
period from 19™ of February 2022 to 18" of March 2022.

Date Epoch Inc. RA ase Arg Mean Mefm
fetched osculation ] Ecc. node Peri. anom motion
[hr] [°] [°] [rev/day]
2022 Mar 18 18:54 2022 Mar 16 23:12:04 62.8279 | 0.67486 | 11.9226 | 270.8045 | 18.7351 2.00802
2022 Mar 17 18:54 2022 Mar 07 12:06:13 62.8228 | 0.67481 | 11.9886 | 270.8195 | 18.7351 2.00802
2022 Mar 16 18:54 2022 Mar 07 12:06:13 62.8228 | 0.67481 | 11.9886 | 270.8195 | 18.7351 2.00802
2022 Mar 15 18:54 2022 Mar 07 12:06:13 62.8228 | 0.67481 | 11.9886 | 270.8195 | 18.7351 2.00802
2022 Mar 14 18:54 2022 Mar 07 12:06:13 62.8228 | 0.67481 | 11.9886 | 270.8195 | 18.7351 2.00802
2022 Mar 13 18:54 2022 Mar 07 12:06:13 62.8228 | 0.67481 | 11.9886 | 270.8195 | 18.7351 2.00802
2022 Mar 12 18:53 2022 Mar 07 12:06:13 62.8228 | 0.67481 | 11.9886 | 270.8195 | 18.7351 2.00802
2022 Mar 11 18:54 2022 Mar 07 12:06:13 62.8228 | 0.67481 | 11.9886 | 270.8195 | 18.7351 2.00802
2022 Mar 10 18:54 2022 Mar 04 05:57:55 62.8064 | 0.67491 | 12.0099 | 270.8231 | 18.7351 2.00802
2022 Mar 09 18:54 2022 Mar 04 05:57:55 62.8064 | 0.67491 | 12.0099 | 270.8231 | 18.7351 2.00802
2022 Mar 08 18:54 2022 Mar 04 05:57:55 62.8064 | 0.67491 | 12.0099 | 270.8231 | 18.7351 2.00802
2022 Mar 07 18:54 2022 Mar 04 05:57:55 62.8064 | 0.67491 | 12.0099 | 270.8231 18.7351 2.00802
2022 Mar 06 18:54 2022 Mar 04 05:57:55 62.8064 | 0.67491 | 12.0099 | 270.8231 | 18.7351 2.00802
2022 Mar 05 18:54 2022 Mar 04 05:57:55 62.8064 | 0.67491 | 12.0099 | 270.8231 18.7351 2.00802
2022 Mar 04 18:54 2022 Feb 24 13:07:07 62.8173 | 0.67474 | 12.0649 | 270.8368 | 18.7351 2.00802
2022 Mar 03 18:54 2022 Feb 24 13:07:07 62.8173 | 0.67474 | 12.0649 | 270.8368 | 18.7351 2.00802
2022 Mar 02 18:54 2022 Feb 24 13:07:07 62.8173 | 0.67474 | 12.0649 | 270.8368 | 18.7351 2.00802
2022 Mar 01 18:54 2022 Feb 24 13:07:07 62.8173 | 0.67474 | 12.0649 | 270.8368 | 18.7351 2.00802
2022 Feb 28 18:54 2022 Feb 24 13:07:07 62.8173 | 0.67474 | 12.0649 | 270.8368 | 18.7351 2.00802
2022 Feb 27 18:56 2022 Feb 24 13:07:07 62.8173 | 0.67474 | 12.0649 | 270.8368 | 18.7351 2.00802
2022 Feb 26 18:54 2022 Feb 17 01:47:33 62.8150 | 0.67470 | 12.1169 | 270.8484 | 18.7351 2.00802
2022 Feb 25 18:54 2022 Feb 17 01:47:33 62.8150 | 0.67470 | 12.1169 | 270.8484 | 18.7351 2.00802
WWWw.imjst.org
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Date Epoch Inc. RA asc Arg Mean Mefm
fetched osculation ] Ecc. node Peri. anom motion
[hr] [°] [°l [rev/day]
2022 Feb 24 18:55 2022 Feb 17 01:47:33 62.8150 | 0.67470 | 12.1169 | 270.8484 | 18.7351 2.00802
2022 Feb 23 18:54 2022 Feb 17 01:47:33 62.8150 | 0.67470 | 12.1169 | 270.8484 | 18.7351 2.00802
2022 Feb 22 18:54 2022 Feb 17 01:47:33 62.8150 | 0.67470 | 12.1169 | 270.8484 | 18.7351 2.00802
2022 Feb 21 18:54 2022 Feb 17 01:47:33 62.8150 | 0.67470 | 12.1169 | 270.8484 | 18.7351 2.00802
2022 Feb 20 18:54 2022 Feb 17 01:47:33 62.8150 | 0.67470 | 12.1169 | 270.8484 | 18.7351 2.00802
2022 Feb 19 18:54 2022 Feb 12 14:11:23 62.8127 | 0.67470 | 12.1482 | 270.8539 | 18.7351 2.00802
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Figure 4 The graph of mean orbital altitude versus time for Tundra orbit satellite (COSMOS 2510) as presented by in-the-
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Figure 5 The graph of mean inclination versus time for Tundra orbit satellite (COSMOS 2510) as presented by in-the-sky.org
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Figure 6 The graph of orbital eccentricity versus time for Tundra orbit satellite (COSMOS 2510) as presented by in-the-sky.org

3. Results and Discussion

The results of the visibility time of the four Tundra orbit
satellites (COSMOS 2546, COSMOS 2541, COSMOS
2518 and COSMOS 2510) considered in the study for the
case of 0° minimum elevation angle are in Table 3 and
Figure 7, Figure 8 and Figure 9. The results showed that
the visibility time increases with increase in eccentricity of
the orbit. Hence, COSMOS 2546 satellite with the least
eccentricity of 0.668 has the lowest visibility time of

10.666 hours per orbital period of 11.970 hours which
gives 89.108 % of visibility time with respect to its orbital
period. On the other hand, COSMOS 2518 satellite with
the highest eccentricity of 0.704 has the highest visibility
time of 10.864 hours per orbital period of 11.968 hours
which gives 90.864 % of visibility time with respect to its
orbital period.

Table 3 The results of the visibility time of the four Tundra orbit satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518
and COSMOS 2510) considered in the study for the case of 0° minimum elevation angle

COSMOS satellite COSMOS Satellite COS.MIOS s'atelhte COSMIOS s'atellllte Percentage of visibility
Orbital Altitude, h (km) Eccentricity, e Orbital Period, To visibility time in time per period (%)
’ ’ (hour) hour
20,187.300 0.668 11.970 10.666 89.108
20,168.300 0.675 11.957 10.693 89.432
20,188.500 0.701 11.971 10.851 90.651
20,185.100 0.704 11.968 10.864 90.775
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Figure 7 The bar chart of the results of the visibility time, orbital period, and eccentricity of the four Tundra orbit satellites
(COSMOS 2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the case of 0°
minimum elevation angle
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Figure 8 The graph of the visibility time and orbital period verses eccentricity for the four Tundra orbit satellites (COSMOS
2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the case of 0° minimum
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Figure 9 The graph of the percentage of visibility time per orbital period verses eccentricity for the four Tundra orbit satellites
(COSMOS 2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the case of 0°
minimum elevation angle

Again, the results of the visibility time of the four Tundra
orbit  satellites (COSMOS 2546, COSMOS 2541,
COSMOS 2518 and COSMOS 2510) considered in the
study for the case of minimum elevation angle ranging
from 0° to 12° are in Table 4 and Figure 10. The results
show that the visibility time decreases with increase in the
minimum elevation angle restriction. For instance, for the
COSMOS 2546 satellite, the visibility time decreased from
10.666 hours at minimum elevation angle restriction of 0°
to visibility time of 9.244 hours at minimum elevation
angle restriction of 12°.

Also, the results of the percentage of visibility time per
orbital period of the four Tundra orbit satellites

(COSMOS 2546, COSMOS 2541, COSMOS 2518 and
COSMOS 2510) considered in the study for the case of
minimum elevation angle ranging from 0° to 12° are in
Table 5, Figure 11 and Figure 12. The results show that
the percentage of visibility time per orbital period
decreases with increase in the minimum elevation angle
restriction. For instance, for the COSMOS 2546 satellite,
the percentage of visibility time per orbital period
decreased from 89.108 % at minimum elevation angle
restriction of 0° to a value of 77.227 % at minimum
elevation angle restriction of 12°.

Table 4 The results of the visibility time of the four Tundra orbit satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518
and COSMOS 2510) considered in the study for the case of minimum elevation angle ranging from 0° to 12°
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COSMOS COSMOS COSMOS COSMOS
Satellite Name COSMOS Satellite satellite satellite satellite satellite
Eccentricity, e visibility time in | visibility time in | visibility time in | visibility time in
hour, Emin =0° hour, Emin =4° hour, Emin =8° | hour, Emin =12°
COSMOS 2546 0.66799 10.666 10.192 9.718 9.244
COSMOS 2510 0.67486 10.693 10.218 9.743 9.267
COSMOS 2541 0.70126 10.851 10.369 9.887 9.405
COSMOS 2518 0.70399 10.864 10.381 9.898 9.416
11.0
—0—=0
108 —o— COSMOS satellite
c= 106 T visibility time in
.; S hour, Emin =0°
58 102 o———o0— —e— COSMOS satellite
2E visibility time in
E E 10.0 hour, Emin =4°
EEg 08 i
g COSMOS satellite
Lag %0 visibility time in
% g 9.4 —0o—=0 hour, Emin =8°
g S 9.2 o
; > . —8— COSMOS satellite
=3 9.0 visibility time in
§ 5 0.665 0.670 0.675 0.680 0.685 0.690 0.695 0700 0.705 o Db =L
)
C =

COSMOS Satellite Eccentricity,e

Figure 10 The graph of the percentage of visibility time per orbital period verses eccentricity for the four Tundra orbit
satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the
case of minimum elevation angle ranging from 0° to 12°
Table 5 The results of the percentage of visibility time per orbital period of the four Tundra orbit satellites (COSMOS 2546,
COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the case of minimum elevation
angle ranging from 0° to 12°

Percentage of

Percentage of

Percentage of

Percentage of

Satellite | COSMOS Satellite | visibility time per | visibility time per | visibility time per | visibility time per
Name Eccentricity, e orbital period orbital period orbital period orbital period
(%), Emin =0° (%), Emin =4° (%), Emin =8° (%), Emin =12°

COSMOS 2546 0.66799 89.108 85.147 81.187 77.227
COSMOS 2510 0.67486 89.432 85.457 81.482 77.508
COSMOS 2541 0.70126 90.651 86.622 82.593 78.564
COSMOS 2518 0.70399 90.775 86.740 82.706 78.672
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Figure 11 The graph of the percentage of visibility time per orbital period verses eccentricity for the four Tundra orbit
satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the
case of minimum elevation angle ranging from 0° to 12°
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Figure 12 The bar chart of the eccentricity and fraction of visibility time relative to orbital period for the four Tundra orbit
satellites (COSMOS 2546, COSMOS 2541, COSMOS 2518 and COSMOS 2510) considered in the study for the
case of 0° minimum elevation angle

4. Conclusion

The commutation visibility time of four highly eccentric
tundra orbit satellites is presented. The computation
examined the impact of the minimal elevation angle on the
visibility time. Also, the variation of the satellite visibility
time with the eccentricity of the orbit is considered. The
Results showed that the visibility time increases with

increase in eccentricity but the visibility time decreases
with increase in the minimal elevation angle restriction.
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