
International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 6 Issue 5, May - 2021

www.imjst.org

IMJSTP29120554 3493

Strict Complementary Root-Based Seeded
Secant Iteration Method For Finding The Roots

Of Nonlinear Functions

Olutimo Akinwale Lewis
1

Department of mathematics, Lagos

State University, Nigeria

aolutimo@yahoo.com

Uwakwe Chikwado
2

Department of Electrical/Electronic

Engineering Imo State Polytechnic,

Umuagwo, Owerri, Nigeria

Afolayan Jimoh Jacob
3

Department of Electrical/Electronic and

Computer Engineering University of

Uyo

Abstract— In this paper, a strict complementary root-

based seeded secant iteration (SCSSI) method for

finding the roots of nonlinear functions is presented.

The SCSSI method requires only one initial guess root

value making it easier to implement than the classical

secant iteration method. The mathematical and

algorithmic procedure required to implement the

SCSSI method are presented along with numerical

examples that were implemented in Mathlab software.

The result of the SCSSI method applied for the roots of

a case study function, 𝐟(𝐱) = 𝐱𝟔 − 𝟐𝐱 − 𝟏 = 𝟎 with

initial 𝒙𝟎 = 1 and error tolerance of 𝛆 = 𝟏𝟎−𝟒 showed

that the SCSSI algorithm converged at the 3rd cycle

with actual root value of -0.49283556 whereas the CSSI

algorithm converged at the 5th cycle with actual root

value of -0.49283556. Also, the results for the case of

𝒙𝟎 = 5 show that the SCSSI algorithm converged at the

5th cycle with actual root value of 1.22981 whereas the

CSSI algorithm converged at the 17th cycle. However,

the results for the case of 𝒙𝟎 = 10 show that the SCSSI

algorithm converged at the 6th cycle with actual root

value of 1.22981 whereas the CSSI algorithm did not

converge. The later result show the limitation of the

CSSI algorithm which is that when the initial guess

root is far above or far below the actual root, the CSSI

may never converge. In essence, the CSSI is suitable for

cases where the approximate value of the actual root

can be estimated in advance. However, the SCSSI

algorithm solved that problem by using a binary back-

off mechanism.

Keywords— Classical Secant Method, Strict
Complementary Root-Based Mechanism, Error
Tolerance¸ Seeded Secant Iteration, Convergence
Cycle

1. INTRODUCTION

Over the years, researchers have developed different

numerical iteration approaches that are applied in finding

the roots of nonlinear equations, as well as in solving

transcendental equations [1,2,3,4,5,6,7,8,9,10]. Among the

numerous numerical iteration approaches, the classical

secant approach has been widely applied

[11,12,13,14,15,16,17]. However, because secant method

required two initial guess root values, researchers have

gone ahead to develop modified versions of the secant

approach such that only one initial guess root is required

[18,18,19,20,21,22]. One of such method is the

complementary root-based seeded secant method which

uses a fixed point iteration-like method

[23,24,25,26,27,28] once to generate the required two

initial guess roots from a single initial guess root value.

Evaluation result on the complementary root approach

shows that the method works best when the single initial

guess root, 𝑥0 is close to the actual root, 𝑥act . However,

when the initial guess root, 𝑥0 is much greater than

𝑥act , then , the complementary root, g(𝑥0) (denoted here

as 𝑥1 = g(𝑥0) obtained is very high compared to the value

of 𝑥0 and hence, the value of 𝑥2 obtained using the secant

iteration method is almost equal to 𝑥0 . In that case, the

best approach is to reduce the absolute value of 𝑥0 and

then repeat the computation of g(𝑥0) and 𝑥2 in the next

iteration. A simple approach to reduce 𝑥0 is to use half of

the current value of 𝑥0, (that is, in the next iteration, 𝑥0 =
𝑥0

2
). This is a binary back-off approach. The binary back-

off procedure is repeated until a point at which the

absolute value of 𝑥1 is relatively close to the value of

𝑥0 . At this point, the secant iteration continues with

𝑥0 = 𝑥2 and 𝑥1 = g(𝑥0) and then both 𝑥0 and 𝑥1 are

used to compute the next value of 𝑥2.

Specifically, in this paper, the development of the

Complementary Root-Based Seeded Secant Iteration

(SCSSI) method for finding the roots of nonlinear

equations and for solving transcendental equations is

presented. The SCSSI algorithm is also presented. Also,

some numerical examples are used to compare the

convergence of the SCSSI method with that of the

Onetime Complementary Root Seeded Secant (CSSI)

method.

2. METHODOLOGY

2.1 Development of the Strict Complementary Root-

Based Seeded Secant Iteration Method

The complete procedure for the strict complementary root-

based seeded secant iteration method is presented in

respect of a function 𝑓(𝑥) which has been re-arranged in

its complementary root form, denoted as 𝑓(𝑥) where,

 𝑓(𝑥) = 𝑥 − 𝑔(𝑥) (1)

The complementary root form, 𝑓(𝑥) is such that the value

of x at which 𝑔(𝑥) = x gives the root of the function f(x).

Now , let 𝑥0= 1 be the initial guess root of function f(x)

and 𝑥1 = g(𝑥0), then, then applying secant approach for

the next guess root, 𝑥2 gives;

𝑥2 =
[(𝑥0)f(𝑥1)]−[(𝑥1)f(𝑥0)]

 f(𝑥1)−f(𝑥0)
(2)

http://www.imjst.org/
mailto:olutimo@yahoo.com

International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 6 Issue 5, May - 2021

www.imjst.org

IMJSTP29120554 3494

The procedure for computing the actual root, 𝑥ac of the

function f(x) is given as follows;

Step 1 Get 𝑥0

Step 2 Compute 𝑥1 = g(𝑥0)

Step 3 Compute 𝑥2 =
[(𝑥0)f(𝑥1)]−[(𝑥1)f(𝑥0)]

 f(𝑥1)−f(𝑥0)

Step 4 Compute 𝑓(𝑥2)

Step 5 if (| 𝑓(𝑥2) | ≤ ∈) then 𝑥ac = 𝑥2 ; goto step 7

endif

Step 6 If ((|
𝑚𝑎𝑥(𝑥0,𝑥1)

𝑚𝑖𝑛(𝑥0,𝑥1)
| > 2) 𝑎𝑛𝑑 (|𝑥0| − |𝑥2| <

 0.01|𝑥0|)) then

𝑥0 =
𝑥0

2
 ; 𝑔𝑜𝑡𝑜 𝑠𝑡𝑒𝑝 2

 𝑒𝑙𝑠𝑒

 𝑥0 = 𝑥2; 𝑔𝑜𝑡𝑜 𝑠𝑡𝑒𝑝 2
endif

Step 7 Output 𝑥ac

Step 8 End

2.2 Sample function and it complementary root form

Consider the nonlinear function of x given as;

f(x) = x6 − 2x − 1 = 0 (3)

It can be arranged in the complementary root form in

different ways. One, by making x the subject of the

formula using 2x as the basis for the x as follows;

x = g(x) =
 x6−1

2
 (4)

Hence, the complementary root form of f(x) is

 𝑓(𝑥) = 𝑥 − 𝑔(𝑥) = 𝑥 −
 x6−1

2
 (5)

Also, by making x the subject of the formula using x6 as

the basis for the x as follows;

x = g(x) = √(2𝑥 + 1)6
= (2𝑥 + 1)

1

6 (6)

Hence, the complementary root form of f(x) is

 𝑓(𝑥) = 𝑥 − 𝑔(𝑥) = 𝑥 − (2𝑥 + 1)
1

6 (7)

Numerical example is given in respect of the nonlinear

function, f(x) = x6 − 2x − 1 = 0 . For the given

function, the complementary root form used is,

𝑓(𝑥) = 𝑥 − 𝑔(𝑥) = 𝑥 −
 x6−1

2
 (8)

Where,

𝑔(𝑥) =
 x6−1

2
 (9)

The iterative solution for the Strict Complementary Root-

Based Seeded Secant Iteration (SCSSI) method is

implemented in Mathlab software for different initial guess

roots and the convergence performance is compare with

that of the Onetime Complementary Root Seeded Secant

(CSSI) method.

3. RESULTS AND DISCUSSION

The result of the SCSSI method for the root of f(x) =
 x6 − 2x − 1 = 0 with initial 𝑥0 = 1 which gives

𝑥1 = g(𝑥0) = 0 is presented in Table 1. The SCSSI was

simulated with error tolerance of ε = 10−4 and the results

show that the SCSSI algorithm converged at the 3rd cycle

with actual root value of -0.49283556 whereas the CSSI

algorithm (in Table 2) converged at the 5th cycle with

actual root value of -0.49283556. Also, the results for the

case of 𝑥0 = 5 show that the SCSSI algorithm (in Table 3)

converged at the 5th cycle with actual root value of

1.22981 whereas the CSSI algorithm (in Table 4)

converged at the 17th cycle with actual root value of

1.22981.

Again, the results for the case of 𝑥0 = 10 show that the

SCSSI algorithm (in Table 5) converged at the 6th cycle

with actual root value of 1.22981 whereas the CSSI

algorithm (in Table 6) did not converge. Similarly, the

results for the case of 𝑥0 = 100 show that the SCSSI

algorithm (in Table 7) converged at the 12th cycle with

actual root value of -0.49281 whereas the CSSI algorithm

(in Table 8) did not converge. The results in Table 6 and

Table 8 show the limitation of the CSSI algorithm. When

the initial guess root is far above or far below the actual

root, the CSSI may never converge. In essence, the CSSI is

suitable for cases where the approximate value of the

actual root can be estimated in advance. However, the

SCSSI algorithm solved that problem by using the binary

back-off mechanism.

Table 1 The result of the SCSSI method for the root of f(x) = x6 − 2x − 1 = 0 with initial 𝑥0 = 1 which gives g(𝑥0) =
0.

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2)

0 1 0 -2 -1 -1 2.000E+00 1.000E+00

1 -1 0 2 -1 -0.33333 -3.320E-01 -1.000E+00

2 -0.33333333 -0.49931 -0.33196 0.014125 -0.49254 -6.430E-04 1.660E-01

3 -0.49253983 -0.49286 -0.00064 5.6E-05 -0.49284 -6.736E-09 3.215E-04

4 -0.49283556 -0.49284 -6.7E-09 5.88E-10 -0.49284 0.000E+00 3.368E-09

http://www.imjst.org/

International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 6 Issue 5, May - 2021

www.imjst.org

IMJSTP29120554 3495

Table 2 The result of the CSSI method for the root of f(x) = x6 − 2x − 1 = 0 with initial 𝑥0 = 1 which gives g(𝑥0) =
0.

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2)

0 1 0 -2 -1 -1.00000000 2.000E+00 1.000E+00

1 0 -1 -1 2 -0.33333333 -3.320E-01 1.000E+00

2 -1 -0.333333333 2 -0.33196159 -0.42823529 -1.374E-01 -6.667E-01

3 -0.33333333 -0.42823529 -0.33196159 -0.13736212 -0.49522383 5.198E-03 9.490E-02

4 -0.42823529 -0.49522383 -0.13736212 0.00519825 -0.49278120 -1.182E-04 6.699E-02

5 -0.49522383 -0.49278120 0.00519825 -0.00011821 -0.49283551 -1.155E-07 -2.443E-03

6 -0.49278120 -0.49283551 -0.00011821 -0.00000012 -0.49283556 2.555E-12 5.431E-05

Table 3 The result of the SCSSI method for the root of f(x) = x6 − 2x − 1 = 0 with initial 𝑥0 = 5 which gives g(𝑥0) =
7812.

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2)

0 5 7812 15614 2.27E+23 5 1.561E+04 -7.807E+03

1 2.5 121.5703 238.1406 3.23E+12 2.5 2.381E+02 -1.191E+02

2 1.25 1.407349 0.314697 3.955109 1.236398 9.952E-02 -1.573E-01

3 1.236397915 1.286157 0.099518 0.954197 1.230604 1.183E-02 -4.976E-02

4 1.230604048 1.236521 0.011834 0.101406 1.229822 1.811E-04 -5.917E-03

5 1.229822323 1.229913 0.000181 0.001529 1.22981 4.291E-08 -9.057E-05

6 1.229810152 1.22981 4.29E-08 3.62E-07 1.22981 2.665E-15 -2.146E-08

7 1.229810149 1.22981 2.66E-15 2.31E-14 1.22981 0.000E+00 0.000E+00

Table 4 The result of the CSSI method for the root of f(x) = x6 − 2x − 1 = 0 with initial 𝑥0 = 1 which gives g(𝑥0) =
0.

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2)

0 5 7812 15614 2.273E+23 5 1.561E+04 -7.807E+03

1 7812 5 2.273E+23 15614 5 1.561E+04 7.807E+03

2 5 5 15614 15614 4.6666667 1.032E+04 0.000E+00

3 5 4.6666667 15614 10318.248 4.0171996 4.194E+03 3.333E-01

4 4.6666667 4.0171996 10318.248 4193.7827 3.5724713 2.071E+03 6.495E-01

5 4.0171996 3.5724713 4193.7827 2070.6539 3.1387347 9.489E+02 4.447E-01

6 3.5724713 3.1387347 2070.6539 948.87616 2.7718508 4.470E+02 4.337E-01

7 3.1387347 2.7718508 948.87616 446.99993 2.4450828 2.078E+02 3.669E-01

8 2.7718508 2.4450828 446.99993 207.7886 2.1612389 9.659E+01 3.268E-01

9 2.4450828 2.1612389 207.7886 96.587481 1.9146967 4.444E+01 2.838E-01

10 2.1612389 1.9146967 96.587481 44.442579 1.7045713 2.012E+01 2.465E-01

11 1.9146967 1.7045713 44.442579 20.120488 1.5307447 8.804E+00 2.101E-01

12 1.7045713 1.5307447 20.120488 8.8037118 1.395519 3.595E+00 1.738E-01

13 1.5307447 1.395519 8.8037118 3.5950502 1.3021854 1.271E+00 1.352E-01

14 1.395519 1.3021854 3.5950502 1.2713279 1.2511218 3.330E-01 9.333E-02

15 1.3021854 1.2511218 1.2713279 0.3330399 1.232997 4.777E-02 5.106E-02

16 1.2511218 1.232997 0.3330399 0.0477666 1.2299622 2.263E-03 1.812E-02

17 1.232997 1.2299622 0.0477666 0.002263 1.2298113 1.656E-05 3.035E-03

18 1.2299622 1.2298113 0.002263 1.656E-05 1.2298101 5.805E-09 1.509E-04

19 1.2298113 1.2298101 1.656E-05 5.805E-09 1.2298101 1.599E-14 1.112E-06

http://www.imjst.org/

International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 6 Issue 5, May - 2021

www.imjst.org

IMJSTP29120554 3496

Table 5 The result of the SCSSI method for the root of f(x) = x6 − 2x − 1 = 0 with initial 𝑥0 = 10 which gives

g(𝑥0) = 499999.5.

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2)

0 10 499999.5 999979 1.56E+34 10 1.000E+06 -5.000E+05

1 5 7812 15614 2.27E+23 5 1.561E+04 -7.807E+03

2 2.5 121.5703 238.1406 3.23E+12 2.5 2.381E+02 -1.191E+02

3 1.25 1.407349 0.314697 3.955109 1.236398 9.952E-02 -1.573E-01

4 1.236397915 1.286157 0.099518 0.954197 1.230604 1.183E-02 -4.976E-02

5 1.230604048 1.236521 0.011834 0.101406 1.229822 1.811E-04 -5.917E-03

6 1.229822323 1.229913 0.000181 0.001529 1.22981 4.291E-08 -9.057E-05

7 1.229810152 1.22981 4.29E-08 3.62E-07 1.22981 2.665E-15 -2.146E-08

8 1.229810149 1.22981 2.66E-15 2.31E-14 1.22981 0.000E+00 0.000E+00

Table 6 The result of the CSSI method for the root of f(x) = x6 − 2x − 1 = 0 with initial 𝑥0 = 10 which gives

g(𝑥0) = 0.

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2)

0 10 499999.5 999979 1.562E+34 10 1.000E+06 -5.000E+05

1 499999.5 10 1.562E+34 999979 10 1.000E+06 5.000E+05

2 10 10 999979 999979 #DIV/0! #DIV/0! 0.000E+00

Table 7 The result of the SCSSI method for the root of f(x) = x6 − 2x − 1 = 0 with initial 𝑥0 = 1000 which gives

g(𝑥0) = 5E+17.

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2)

0 1000 5E+17 1E+18 1.6E+106 1000 1.000E+18 -5.000E+17

1 500 7.81E+15 1.56E+16 2.27E+95 500 1.562E+16 -7.812E+15

2 250 1.22E+14 2.44E+14 3.31E+84 250 2.441E+14 -1.221E+14

3 125 1.91E+12 3.81E+12 4.81E+73 125 3.815E+12 -1.907E+12

4 62.5 2.98E+10 5.96E+10 7.01E+62 62.5 5.960E+10 -2.980E+10

5 31.25 4.66E+08 9.31E+08 1.02E+52 31.25 9.313E+08 -4.657E+08

6 15.625 7275957 14551883 1.48E+41 15.625 1.455E+07 -7.276E+06

7 7.8125 113686.3 227357.1 2.16E+30 7.8125 2.274E+05 -1.137E+05

8 3.90625 1775.857 3543.901 3.14E+19 3.90625 3.544E+03 -1.772E+03

9 1.953125 27.25558 50.6049 4.1E+08 1.953122 5.060E+01 -2.530E+01

10 0.9765625 -0.06632 -2.08576 -0.86736 -0.80873 8.972E-01 1.043E+00

11 -0.80873077 -0.36011 0.897246 -0.2776 -0.46611 -5.752E-02 -4.486E-01

12 -0.46611231 -0.49487 -0.05752 0.004433 -0.49281 -4.550E-05 2.876E-02

13 -0.49281463 -0.49284 -4.6E-05 3.97E-06 -0.49284 -3.380E-11 2.275E-05

14 -0.49283556 -0.49284 -3.4E-11 2.95E-12 -0.49284 0.000E+00 1.690E-11

http://www.imjst.org/

International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 6 Issue 5, May - 2021

www.imjst.org

IMJSTP29120554 3497

Table 8 The result of the CSSI method for the root of f(x) = x6 − 2x − 1 = 0 with initial 𝑥0 = 10 which gives

g(𝑥0) = 5E+17.

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2)

0 1000 5E+17 1E+18 1.56E+106 1000 1.000E+18 -5.000E+17

1 5E+17 1000 1.56E+106 1E+18 1000 1.000E+18 5.000E+17

2 1000 1000 1E+18 1E+18 #DIV/0! #DIV/0! 0.000E+00

4. CONCLUSION

A form of secant iteration scheme that combines the

classical secant algorithm and a complementary root

method is presented for finding the roots of nonlinear

functions. The new method referred here as strict

complementary root-based seeded secant iteration (SCSSI)

method requires only one initial guess root value which

makes it easier to implement than the classical secant

iteration method. More so, the SCSSI method is suitable

for arbitrary initial guess root value. In essence, it can

accommodate arbitrary initial root guess value and still

converge to the actual root as long as the function is

defined in the range of values the arbitrary initial guess

root is selected. The SCSSI used binary back-off

mechanism to reduce the initial guess value iteratively

until a value that is close to the actual root value is

obtained. Sample numerical computations are presented to

demonstrate the applicability of the new method.

REFERENCES

1. Thota, S. (2021). A numerical algorithm to
find a root of non-linear equations using
householder’s method. Int J Adv Appl
Sci, 10(2), 141-148.

2. Thota, S., & Srivastav, V. K. (2018).
Quadratically convergent algorithm for
computing real root of non-linear
transcendental equations. BMC research
notes, 11(1), 1-6.

3. Srivastav, V. K., Thota, S., & Kumar, M.
(2019). A new trigonometrical algorithm for
computing real root of non-linear
transcendental equations. International
Journal of Applied and Computational
Mathematics, 5(2), 1-8.

4. Qureshi, U. K., Bozdar, I. A., Pirzada, A., &
Arain, M. B. (2019). Quadrature Rule Based
Iterative Method for the Solution of Non-
Linear Equations: Quadrature Rule for the
Solution of Non-Linear
Equations. Proceedings of the Pakistan
Academy of Sciences: A. Physical and
Computational Sciences, 56(1), 39-43.

5. Moheuddin, M. M., Uddin, M. J., & Kowsher,
M. ANew STUDY TO FIND OUT THE BEST
COMPUTATIONAL METHOD FOR
SOLVING THE NONLINEAR EQUATION.

6. González-Gaxiola, O., & Hernández-Linares,
S. (2021). An Efficient Iterative Method for
Solving the Elliptical Kepler’s
Equation. International Journal of Applied
and Computational Mathematics, 7(2), 1-14.

7. Qureshi, U. K., Shaikh, A. A., & SOLANGI,
M. (2017). Modified Free Derivative Open
Method for Solving Non-Linear
Equations. Sindh University Research
Journal-SURJ (Science Series), 49(4), 821-
824.

8. Jeswal, S. K. (2020). Connectionist Models
for Solving Linear and Nonlinear
Equations (Doctoral dissertation).

9. Qureshi, U. K., Kalhoro, Z. A., Malookani, R.
A., Dehraj, S., Siyal, S. H., & Buriro, E. A.
(2020). Quadratic Convergence Iterative
Algorithms of Taylor Series for Solving Non-
linear Equations. Quaid-E-Awam University
Research Journal of Engineering, Science &
Technology, Nawabshah., 18(2), 150-156.

10. Rehman, M. A., Naseem, A., & Abdeljawad,
T. (2021). Some Novel Sixth-Order Iteration
Schemes for Computing Zeros of Nonlinear
Scalar Equations and Their Applications in
Engineering. Journal of Function
Spaces, 2021.

11. Monsalve, M., & Raydan, M. (2011).
Newton’s method and secant methods: A
longstanding relationship from vectors to
matrices. Portugaliae Mathematica, 68(4),
431-475.

12. Kelley, C. T. (2003). Solving nonlinear
equations with Newton's method. Society for
Industrial and Applied Mathematics.

13. Birgin, E. G., & Martínez, J. M. (2020).
Secant acceleration of sequential residual
methods for solving large-scale nonlinear
systems of equations. arXiv preprint
arXiv:2012.13251.

14. Dieci, L., & Russell, R. D. (2020). Some
aspects of invariant subspaces computation.
In Asymptotic and Computational
Analysis (pp. 565-585). CRC Press.

15. Liu, H., Zhang, Q., Xu, C., & Ye, Z. A novel
FastICA algorithm based on improved secant
method for Intelligent drive. Journal of
Intelligent & Fuzzy Systems, (Preprint), 1-14.

16. Ehiwario, J. C., & Aghamie, S. O. (2014).
Comparative study of bisection, Newton-
Raphson and secant methods of root-finding
problems. IOSR Journal of
Engineering, 4(04), 01-07.

17. Gmati, N., & Zrelli, N. (2006). Numerical
study of some iterative solvers for acoustics
in unbounded domains. Revue Africaine de

http://www.imjst.org/

International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 6 Issue 5, May - 2021

www.imjst.org

IMJSTP29120554 3498

la Recherche en Informatique et
Mathématiques Appliquées, 4, 1-23.

18. Simeon, O. (2015) Analysis Of Perturbance
Coefficient-Based Seeded Secant Iteration

Method. Journal of Multidisciplinary Engineering
Science and Technology (JMEST) Vol. 2 Issue 1,
January – 2015

19. Kumar, S., Kanwar, V., & Singh, S. (2012).
On some modified families of multipoint
iterative methods for multiple roots of
nonlinear equations. Applied Mathematics
and Computation, 218(14), 7382-7394.

20. Petkovic, M., Neta, B., Petkovic, L., &
Dzunic, J. (2012). Multipoint methods for
solving nonlinear equations.

21. Oliveira, I. F., & Takahashi, R. H. (2020). An
Enhancement of the Bisection Method
Average Performance Preserving Minmax
Optimality. ACM Transactions on
Mathematical Software (TOMS), 47(1), 1-24.

22. Pourjafari, E., & Mojallali, H. (2012). Solving
nonlinear equations systems with a new
approach based on invasive weed
optimization algorithm and clustering. Swarm
and Evolutionary Computation, 4, 33-43.

23. Graichen, K. (2012). A fixed-point iteration
scheme for real-time model predictive
control. Automatica, 48(7), 1300-1305.

24. Nilsrakoo, W., & Saejung, S. (2006). A new
three-step fixed point iteration scheme for
asymptotically nonexpansive
mappings. Applied Mathematics and
Computation, 181(2), 1026-1034.

25. Abushammala, M., Khuri, S. A., & Sayfy, A.
(2015). A novel fixed point iteration method
for the solution of third order boundary value
problems. Applied Mathematics and
Computation, 271, 131-141.

26. Khuri, S. A., & Sayfy, A. (2015). A novel fixed
point scheme: Proper setting of variational
iteration method for BVPs. Applied
Mathematics Letters, 48, 75-84.

27. Khuri, S. A., & Louhichi, I. (2021). A new
fixed point iteration method for nonlinear
third-order BVPs. International Journal of
Computer Mathematics, 1-13.

28. Akewe, H. (2016). The stability of a modified
Jungck-Mann hybrid fixed point iteration
procedure. International Journal of
Mathematical Sciences and Optimization:
Theory and Applications, 2016, 95-104.

http://www.imjst.org/

