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Abstract— In this paper, a strict complementary root-

based seeded secant iteration (SCSSI) method for 

finding the roots of nonlinear functions   is presented. 

The SCSSI method requires only one initial guess root 

value making it easier to implement than the classical 

secant iteration method. The mathematical and 

algorithmic procedure required to implement the 

SCSSI method are presented along with numerical 

examples that were implemented in Mathlab software. 

The result of the SCSSI method applied for the roots of 

a case study function,  𝐟(𝐱)   =  𝐱𝟔 − 𝟐𝐱 − 𝟏 = 𝟎  with

initial 𝒙𝟎 = 1   and error tolerance of 𝛆 = 𝟏𝟎−𝟒  showed

that the SCSSI algorithm converged at the 3rd cycle 

with actual root value of -0.49283556 whereas the CSSI 

algorithm converged at the 5th cycle with actual root 

value of -0.49283556.  Also, the results for the case of  

𝒙𝟎 = 5 show that the SCSSI algorithm converged at the

5th cycle with actual root value of 1.22981 whereas the 

CSSI algorithm converged at the 17th cycle. However, 

the results for the case of  𝒙𝟎 = 10 show that the SCSSI

algorithm converged at the 6th cycle with actual root 

value of 1.22981 whereas the CSSI algorithm did not 

converge. The later result show the limitation of the 

CSSI algorithm which is that when the initial guess 

root is far above or far below the actual root, the CSSI 

may never converge. In essence, the CSSI is suitable for 

cases where the approximate value of the actual root 

can be estimated in advance. However, the SCSSI 

algorithm solved that problem by using a binary back-

off mechanism.   
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1. INTRODUCTION

Over the years, researchers have developed different 

numerical iteration approaches that are applied in finding 

the roots of nonlinear equations, as well as in solving 

transcendental equations [1,2,3,4,5,6,7,8,9,10]. Among the 

numerous numerical iteration approaches, the classical 

secant approach has been widely applied 

[11,12,13,14,15,16,17]. However, because  secant method 

required two initial guess root values, researchers have 

gone ahead to develop modified versions of the secant 

approach such that only one initial guess root is required 

[18,18,19,20,21,22]. One of such method is the 

complementary root-based seeded secant method which 

uses a fixed point iteration-like method 

[23,24,25,26,27,28] once to generate the required two 

initial guess roots from a single initial guess root value.  

Evaluation result on the complementary root approach 

shows that the method works best when the single initial 

guess root, 𝑥0   is close to the actual root, 𝑥act  . However,

when the initial guess root, 𝑥0  is much greater than

𝑥act  , then , the complementary root, g(𝑥0 ) (denoted here

as 𝑥1 = g(𝑥0 ) obtained is very high compared to the value

of 𝑥0  and hence, the value of 𝑥2 obtained using the secant

iteration method is almost equal to 𝑥0 . In that case, the

best approach is to reduce the absolute value of 𝑥0   and

then repeat the computation of g(𝑥0) and  𝑥2 in the next

iteration. A simple approach to reduce 𝑥0 is to use half of

the current value of 𝑥0, (that is, in the next iteration, 𝑥0  =
𝑥0 

2
).  This is a binary back-off approach. The binary back-

off procedure is repeated until a point at which the 

absolute value of 𝑥1 is relatively close to the value of

𝑥0 . At this point, the secant iteration continues with

𝑥0 = 𝑥2   and  𝑥1 = g(𝑥0) and then both 𝑥0   and  𝑥1  are

used to compute the next value of  𝑥2.

Specifically, in this paper, the development of the 

Complementary Root-Based Seeded Secant Iteration 

(SCSSI) method for finding the roots of nonlinear 

equations and for solving transcendental equations is 

presented. The SCSSI algorithm is also presented. Also, 

some numerical examples are used to compare the 

convergence of the SCSSI method with that of the 

Onetime Complementary Root Seeded Secant (CSSI) 

method. 

2. METHODOLOGY

2.1 Development of the Strict Complementary Root-

Based Seeded Secant Iteration Method 

The complete procedure for the strict complementary root-

based seeded secant iteration method is presented in 

respect of a function 𝑓(𝑥) which has been re-arranged in 

its complementary root form, denoted as  𝑓(𝑥)  where,

    𝑓(𝑥)  =  𝑥 − 𝑔(𝑥)   (1)

The complementary root form, 𝑓(𝑥)  is such that the value

of x at which 𝑔(𝑥) = x gives the root of the function f(x). 

Now ,  let 𝑥0= 1 be the initial guess root of function f(x)

and  𝑥1 = g(𝑥0), then, then applying secant approach for

the next  guess root, 𝑥2  gives;

𝑥2  =  
[(𝑥0)f(𝑥1)]−[(𝑥1)f(𝑥0)]

 f(𝑥1)−f(𝑥0)  
(2) 
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The procedure for computing the actual root,  𝑥ac   of the 

function f(x) is given as follows; 

 

Step 1   Get  𝑥0 

Step 2   Compute  𝑥1 =  g(𝑥0) 

Step 3   Compute  𝑥2  =  
[(𝑥0)f(𝑥1)]−[(𝑥1)f(𝑥0)] 

 f(𝑥1)−f(𝑥0)  
   

Step 4   Compute 𝑓(𝑥2)  

Step 5   if  ( | 𝑓(𝑥2) |  ≤  ∈ ) then 𝑥ac = 𝑥2 ; goto step 7  

endif 

Step 6   If   ((|
𝑚𝑎𝑥(𝑥0,𝑥1)

𝑚𝑖𝑛(𝑥0,𝑥1)
| > 2)   𝑎𝑛𝑑 (|𝑥0| − |𝑥2| <

 0.01|𝑥0|)) then 

𝑥0 =
𝑥0

2
 ;   𝑔𝑜𝑡𝑜 𝑠𝑡𝑒𝑝 2  

             𝑒𝑙𝑠𝑒 

 𝑥0 = 𝑥2;   𝑔𝑜𝑡𝑜 𝑠𝑡𝑒𝑝 2 
endif 

Step 7     Output 𝑥ac 

Step 8    End 

 

 

2.2 Sample function and it complementary root form 

 

Consider the nonlinear function of x given as;  

f(x)   =  x6 − 2x − 1 = 0  (3) 

It can be arranged in the complementary root form in 

different ways. One, by making x the subject of the 

formula using 2x as the basis for the x as follows;  

x =  g(x)   =
 x6−1

2
  (4) 

Hence, the complementary root form of f(x) is  

    𝑓(𝑥)  =  𝑥 − 𝑔(𝑥) = 𝑥 −
 x6−1

2
  (5) 

Also, by making x the subject of the formula using  x6 as 

the basis for the x as follows;  

x =  g(x)  = √(2𝑥 + 1)6
= (2𝑥 + 1)

1

6  (6) 

 

Hence, the complementary root form of f(x) is  

    𝑓(𝑥)  =  𝑥 − 𝑔(𝑥) = 𝑥 − (2𝑥 + 1)
1

6       (7) 

 

Numerical example is given in respect of the nonlinear 

function,  f(x)   =  x6 − 2x − 1 = 0 . For the given 

function, the complementary root form used is,   

𝑓(𝑥)  =  𝑥 − 𝑔(𝑥) = 𝑥 −
 x6−1

2
  (8) 

Where,  

𝑔(𝑥) =  
 x6−1

2
  (9) 

The iterative solution for the Strict Complementary Root-

Based Seeded Secant Iteration (SCSSI) method is 

implemented in Mathlab software for different initial guess 

roots and the convergence performance is compare with 

that of the Onetime Complementary Root Seeded Secant 

(CSSI) method. 

 

3.  RESULTS AND DISCUSSION 

The result of the SCSSI method for the root of f(x)   =
 x6 − 2x − 1 = 0   with initial 𝑥0  = 1   which gives    

𝑥1 = g(𝑥0)  =  0 is presented in Table 1. The SCSSI was 

simulated with error tolerance of ε = 10−4 and the results 

show that the SCSSI algorithm converged at the 3rd cycle 

with actual root value of -0.49283556 whereas the CSSI 

algorithm (in Table 2) converged at the 5th cycle with 

actual root value of -0.49283556.  Also, the results for the 

case of  𝑥0 = 5 show that the SCSSI algorithm (in Table 3) 

converged at the 5th cycle with actual root value of 

1.22981 whereas the CSSI algorithm (in Table 4) 

converged at the 17th cycle with actual root value of 

1.22981. 

Again, the results for the case of  𝑥0 = 10 show that the 

SCSSI algorithm (in Table 5) converged at the 6th cycle 

with actual root value of 1.22981 whereas the CSSI 

algorithm (in Table 6) did not converge. Similarly, the 

results for the case of  𝑥0  = 100 show that the SCSSI 

algorithm (in Table 7) converged at the 12th cycle with 

actual root value of -0.49281 whereas the CSSI algorithm 

(in Table 8) did not converge.  The results in Table 6 and 

Table 8 show the limitation of the CSSI algorithm. When 

the initial guess root is far above or far below the actual 

root, the CSSI may never converge. In essence, the CSSI is 

suitable for cases where the approximate value of the 

actual root can be estimated in advance. However, the 

SCSSI algorithm solved that problem by using the binary 

back-off mechanism.  

 

 

 

 

 

 

Table 1  The result of the SCSSI method for the root of f(x)   =  x6 − 2x − 1 = 0  with initial 𝑥0 = 1   which gives    g(𝑥0)  =  
0. 

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2) 

0 1 0 -2 -1 -1 2.000E+00 1.000E+00 

1 -1 0 2 -1 -0.33333 -3.320E-01 -1.000E+00 

2 -0.33333333 -0.49931 -0.33196 0.014125 -0.49254 -6.430E-04 1.660E-01 

3 -0.49253983 -0.49286 -0.00064 5.6E-05 -0.49284 -6.736E-09 3.215E-04 

4 -0.49283556 -0.49284 -6.7E-09 5.88E-10 -0.49284 0.000E+00 3.368E-09 
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Table 2  The result of the  CSSI method for the root of f(x)   =  x6 − 2x − 1 = 0  with initial 𝑥0 = 1   which gives    g(𝑥0)  =  
0. 

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2) 

0 1 0 -2 -1 -1.00000000 2.000E+00 1.000E+00 

1 0 -1 -1 2 -0.33333333 -3.320E-01 1.000E+00 

2 -1 -0.333333333 2 -0.33196159 -0.42823529 -1.374E-01 -6.667E-01 

3 -0.33333333 -0.42823529 -0.33196159 -0.13736212 -0.49522383 5.198E-03 9.490E-02 

4 -0.42823529 -0.49522383 -0.13736212 0.00519825 -0.49278120 -1.182E-04 6.699E-02 

5 -0.49522383 -0.49278120 0.00519825 -0.00011821 -0.49283551 -1.155E-07 -2.443E-03 

6 -0.49278120 -0.49283551 -0.00011821 -0.00000012 -0.49283556 2.555E-12 5.431E-05 
 

Table 3  The result of the SCSSI method for the root of f(x)   =  x6 − 2x − 1 = 0  with initial 𝑥0 = 5  which gives    g(𝑥0)  =  
7812. 

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2) 

0 5 7812 15614 2.27E+23 5 1.561E+04 -7.807E+03 

1 2.5 121.5703 238.1406 3.23E+12 2.5 2.381E+02 -1.191E+02 

2 1.25 1.407349 0.314697 3.955109 1.236398 9.952E-02 -1.573E-01 

3 1.236397915 1.286157 0.099518 0.954197 1.230604 1.183E-02 -4.976E-02 

4 1.230604048 1.236521 0.011834 0.101406 1.229822 1.811E-04 -5.917E-03 

5 1.229822323 1.229913 0.000181 0.001529 1.22981 4.291E-08 -9.057E-05 

6 1.229810152 1.22981 4.29E-08 3.62E-07 1.22981 2.665E-15 -2.146E-08 

7 1.229810149 1.22981 2.66E-15 2.31E-14 1.22981 0.000E+00 0.000E+00 

 

Table 4  The result of the  CSSI method for the root of f(x)   =  x6 − 2x − 1 = 0  with initial 𝑥0 = 1   which gives    g(𝑥0)   =  
0. 

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2) 

0 5 7812 15614 2.273E+23 5 1.561E+04 -7.807E+03 

1 7812 5 2.273E+23 15614 5 1.561E+04 7.807E+03 

2 5 5 15614 15614 4.6666667 1.032E+04 0.000E+00 

3 5 4.6666667 15614 10318.248 4.0171996 4.194E+03 3.333E-01 

4 4.6666667 4.0171996 10318.248 4193.7827 3.5724713 2.071E+03 6.495E-01 

5 4.0171996 3.5724713 4193.7827 2070.6539 3.1387347 9.489E+02 4.447E-01 

6 3.5724713 3.1387347 2070.6539 948.87616 2.7718508 4.470E+02 4.337E-01 

7 3.1387347 2.7718508 948.87616 446.99993 2.4450828 2.078E+02 3.669E-01 

8 2.7718508 2.4450828 446.99993 207.7886 2.1612389 9.659E+01 3.268E-01 

9 2.4450828 2.1612389 207.7886 96.587481 1.9146967 4.444E+01 2.838E-01 

10 2.1612389 1.9146967 96.587481 44.442579 1.7045713 2.012E+01 2.465E-01 

11 1.9146967 1.7045713 44.442579 20.120488 1.5307447 8.804E+00 2.101E-01 

12 1.7045713 1.5307447 20.120488 8.8037118 1.395519 3.595E+00 1.738E-01 

13 1.5307447 1.395519 8.8037118 3.5950502 1.3021854 1.271E+00 1.352E-01 

14 1.395519 1.3021854 3.5950502 1.2713279 1.2511218 3.330E-01 9.333E-02 

15 1.3021854 1.2511218 1.2713279 0.3330399 1.232997 4.777E-02 5.106E-02 

16 1.2511218 1.232997 0.3330399 0.0477666 1.2299622 2.263E-03 1.812E-02 

17 1.232997 1.2299622 0.0477666 0.002263 1.2298113 1.656E-05 3.035E-03 

18 1.2299622 1.2298113 0.002263 1.656E-05 1.2298101 5.805E-09 1.509E-04 

19 1.2298113 1.2298101 1.656E-05 5.805E-09 1.2298101 1.599E-14 1.112E-06 
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Table 5  The result of the SCSSI method for the root of f(x)   =  x6 − 2x − 1 = 0  with initial 𝑥0 = 10  which gives    

g(𝑥0)   =  499999.5. 

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2) 

0 10 499999.5 999979 1.56E+34 10 1.000E+06 -5.000E+05 

1 5 7812 15614 2.27E+23 5 1.561E+04 -7.807E+03 

2 2.5 121.5703 238.1406 3.23E+12 2.5 2.381E+02 -1.191E+02 

3 1.25 1.407349 0.314697 3.955109 1.236398 9.952E-02 -1.573E-01 

4 1.236397915 1.286157 0.099518 0.954197 1.230604 1.183E-02 -4.976E-02 

5 1.230604048 1.236521 0.011834 0.101406 1.229822 1.811E-04 -5.917E-03 

6 1.229822323 1.229913 0.000181 0.001529 1.22981 4.291E-08 -9.057E-05 

7 1.229810152 1.22981 4.29E-08 3.62E-07 1.22981 2.665E-15 -2.146E-08 

8 1.229810149 1.22981 2.66E-15 2.31E-14 1.22981 0.000E+00 0.000E+00 

 

 

Table 6  The result of the  CSSI method for the root of f(x)   =  x6 − 2x − 1 = 0  with initial 𝑥0 = 10   which gives    

g(𝑥0)   =  0. 

 

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2) 

0 10 499999.5 999979 1.562E+34 10 1.000E+06 -5.000E+05 

1 499999.5 10 1.562E+34 999979 10 1.000E+06 5.000E+05 

2 10 10 999979 999979 #DIV/0! #DIV/0! 0.000E+00 
 

 

Table 7  The result of the SCSSI method for the root of f(x)   =  x6 − 2x − 1 = 0  with initial 𝑥0 = 1000  which gives    

g(𝑥0)   =  5E+17. 

 

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2) 

0 1000 5E+17 1E+18 1.6E+106 1000 1.000E+18 -5.000E+17 

1 500 7.81E+15 1.56E+16 2.27E+95 500 1.562E+16 -7.812E+15 

2 250 1.22E+14 2.44E+14 3.31E+84 250 2.441E+14 -1.221E+14 

3 125 1.91E+12 3.81E+12 4.81E+73 125 3.815E+12 -1.907E+12 

4 62.5 2.98E+10 5.96E+10 7.01E+62 62.5 5.960E+10 -2.980E+10 

5 31.25 4.66E+08 9.31E+08 1.02E+52 31.25 9.313E+08 -4.657E+08 

6 15.625 7275957 14551883 1.48E+41 15.625 1.455E+07 -7.276E+06 

7 7.8125 113686.3 227357.1 2.16E+30 7.8125 2.274E+05 -1.137E+05 

8 3.90625 1775.857 3543.901 3.14E+19 3.90625 3.544E+03 -1.772E+03 

9 1.953125 27.25558 50.6049 4.1E+08 1.953122 5.060E+01 -2.530E+01 

10 0.9765625 -0.06632 -2.08576 -0.86736 -0.80873 8.972E-01 1.043E+00 

11 -0.80873077 -0.36011 0.897246 -0.2776 -0.46611 -5.752E-02 -4.486E-01 

12 -0.46611231 -0.49487 -0.05752 0.004433 -0.49281 -4.550E-05 2.876E-02 

13 -0.49281463 -0.49284 -4.6E-05 3.97E-06 -0.49284 -3.380E-11 2.275E-05 

14 -0.49283556 -0.49284 -3.4E-11 2.95E-12 -0.49284 0.000E+00 1.690E-11 
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Table 8  The result of the  CSSI method for the root of f(x)   =  x6 − 2x − 1 = 0  with initial 𝑥0 = 10   which gives    

g(𝑥0)   =  5E+17. 

 

j 𝑥0 𝑥1 f(𝑥0) f(𝑥1) 𝑥2 f(𝑥2) 𝑥2 -g(𝑥2) 

0 1000 5E+17 1E+18 1.56E+106 1000 1.000E+18 -5.000E+17 

1 5E+17 1000 1.56E+106 1E+18 1000 1.000E+18 5.000E+17 

2 1000 1000 1E+18 1E+18 #DIV/0! #DIV/0! 0.000E+00 
 

 

4. CONCLUSION 

A form of secant iteration scheme that combines the 

classical secant algorithm and a complementary root 

method is presented for finding the roots of nonlinear 

functions. The new method referred here as strict 

complementary root-based seeded secant iteration (SCSSI) 

method requires only one initial guess root value which 

makes it easier to implement than the classical secant 

iteration method. More so, the SCSSI method is suitable 

for arbitrary initial guess root value. In essence, it can 

accommodate arbitrary initial root guess value and still 

converge to the actual root as long as the function is 

defined in the range of values the arbitrary initial guess 

root is selected.  The SCSSI used binary back-off 

mechanism to reduce the initial guess value iteratively 

until a value that is close to the actual root value is 

obtained. Sample numerical computations are presented to 

demonstrate the applicability of the new method. 
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