Thermal Loss Analysis For A Standalone PV Power Installation

Ukabrinachi Emmanuel Ihueze¹

Department of Space Applications and Research, Advanced Space Technology Applications Laboratory, Uyo, Akwa Ibom, Nigeria <u>eukabirinachi@astaluyo.gov.ng</u> Osuji Dennis Chiazor² Department of Space Education and Training, Advanced Space Technology Applications Laboratory, Uyo, Akwa Ibom, Nigeria <u>dennischiazor@gmail.com</u> Ikrang, Elijah George³ Department of Agricultural and Food Engineering, University of Uyo, Akwa Ibom, Nigeria

Abstract- In this paper, simulated thermal loss analysis for a standalone photovoltaic (PV) power installation for a microfinance bank is presented. The study considered four different thermal loss factor setups, namely; Case I; semi-integrated PV module with air duct behind with thermal loss factors, Uo = 20and U1 = 0; Case II: free-standing PV arrays which is the current PVSyst default with thermal loss factors, Uo =29 and U1 = 0; Case III: Integrated PV module with fully insulated back which is the setting for a close roof mounted fully insulated PV arrays with thermal loss factors, Uo =15 and U1 = 0; and Case IV: old version of PVsyst default value with thermal loss factors, Uo =20 and U1 = 6. The PVSyst software was used to conduct the thermal loss analysis of the standalone power system for the four different PV installation setups. Specifically, the cell temperature rise above the ambient temperature, thermal loss due to PV module temperature, PV array efficiency and system efficiency are considered. The results showed that the annual average value of difference between the module temperature and ambient temperature. DTArr (°C) for Case II is the lowest with a value of 37.98°C while that of case III is the highest with a value of 47.49°C. The results for the thermal loss due to temperature, TempLss (kWh) for Case II is the lowest with a value of 364.86 kWh while that of case III is the highest with a value of 623.83 kWh. The results for the PV array efficiency, EffArrR (%) for Case II is the highest with a value of 8.64% while that of case III is the lowest with a value of 7.94%.Furthermore, results for the System Efficiency, EffSysR(%) for Case II is the highest with a value of 8.05 % while that of case III is the lowest with a value of 7.72 % . In all, case II which is for free standing PV installation gave the highest PV array efficiency, highest system efficiency, lowest PV module temperature rise above the ambient temperature and finally the lowest thermal loss. On the other hand, case III which is for integrated PV module installation with fully insulated back and also the setting for close roof mounted PV installation gave the lowest PV array efficiency, lowest system efficiency, highest PV module temperature rise above the ambient temperature and finally the highest thermal loss. The implication is that rooftop PV installation suffers more losses than the free standing PV installation. As such, while space is conserved by re-using the roof for the PV

installation, there is a trade-off in the reduction in the PV array efficiency and system efficiency.

Keywords— Rooftop PV Installation, Thermal Loss Factor, Photovoltaic, Module Temperature, System Efficiency, Ambient Temperature, PV Array Efficiency, Standalone PV Power System

1. INTRODUCTION

Today, photovoltaic (PV) solar power generating system are popularly used in homes and business premised across the globe [1,2,3,4,5,6,7,8,9,10]. Particularly, in the developing countries, PV power generation system (PVPGS) has also become the preferred alternative source of energy to the national grid [11,12,13,14,15,16,17]. This is particularly facilitated by the continual drop in the prices of PVPGS components [18,19,20,21,22]. In any case, over the years, studies have shown that

the performance of the PVPGS is affected by the cell temperature which in turn depends on a number of other parameters [23, 24, 25, 26, 27, 28, 29, 30]. Also, the PVSYsyst software that is commonly used to simulate the sizing, operation and performance of PVPGS has its thermal loss factor and PV cell temperature models which can be used to assess the impact of temperature, wind speed and solar radiation on the performance of the PVPGS [31,32]. Consequently, in this paper, a simulated analysis of thermal loss factor setup impact on a standalone PVPGS is presented. The analysis utilized four different thermal loss factor settings in PVSyst software to assess their impact on the cell temperature, the thermal loss due to cell temperature, the PV array efficiency and system efficiency. In all, the ideas presented in this paper will enable PV system designers to select appropriate thermal loss factor in the PVSyst software for their simulation purposes.

2.0 METHODOLOGY

2.1 The case study load demand and meteorological data

The study conducted on a standalone PV power system used to supply electric power to a

microfinance bank located in Port Harcourt, Rivers State Nigeria (Figure 1). The thermal loss factor setting impact study on the PV power system utilizes the daily energy demand for the microfinance bank, given in Table 1 and the meteorological data of the case study site, given in Table 2.

Table 1 The daily energy demand data for the Microfinance bank used as case study

Description of Item	Qty	Power (Watts)	Total load (Watts)	Daily Hour of Actual Utilization (hours)	Daily (Wh)
Server (plus accessories)	1	150	150	24	3600
Indoor Lightings	6	40	240	13	3120
HP Deskjet (three-in- one) printer/scanner and photocopier	1	44	44	14	616
ATM Machine	3	1000	3000	24	72000
Premises/Street Lightings	8	50	400	14	5600
Router	1	25	25	24	600
Laptop (with security cable)	1	40	40	24	960
Air conditioners	2	746	1492	14	20888
Wireless Access Point	2	12	24	24	576
TOTAL			5415		107960

Figure 1 Google Map Plot of some Microfinance Banks in Port Harcourt, Rivers State

Table 2 The meteorological data of the case study site

Data source	Meteonorm	anaj		
January February March April May June July August September October November December	Global Irrad. Diffuse kWh/m².mth kWh/m².mth 130.2 125.0 139.9 134.5 136.9 115.9 108.6 107.1 118.1 122.0 120.9 130.8 1489.9	Temper. ℃ 26.2 27.6 26.8 27.0 26.9 25.5 25.5 25.1 25.3 25.7 26.1 26.2 26.2	Wind Vel. m/s 0.88 1.02 1.08 1.04 1.01 0.98 0.91 0.93 1.00 0.93 0.86 0.73 0.93	Required Data Image: Horizontal global irradiation Image: Average Ext. Temperature Extra data Image: Horizontal diffuse irradiation Image: Wind velocity Irradiation units KWh/m².day KWh/m².day MJ/m².day MJ/m².mth Wind* Image: Wind Wind

2.2 The thermal loss factor and cell temperature model in PVSyst

In thermal loss analysis, the single-diode mode is the basis of the thermal loss equation used in PVsyst simulation software while the PV array thermal behavior is based on the energy balance between the cell temperature and the ambient temperature. Let T_{cell} denote the PV array cell temperature (in °C), U denote the PVsyst simulation software thermal loss factor, α denote the solar irradiation absorption coefficient of the PV array, η_{PVSTC} denote the PV array efficiency at Standard Test Condition (STC) and G denotes the irradiance incident on the PV module plane (W/m²), then, U in PVsyst simulation software is computed as;

$$U(T_{cell} - T_a) = \alpha(G) (l - \eta_{PVSTC})$$
(1)

$$U = \left(\frac{\alpha(G) \left(1 - \eta_{PVSTC}\right)}{T_{cell} - T_a}\right)$$
(2)

Let V_{wind} denote the wind speed in m/s, U_1 denote the convective heat transfer component which is expressed in W/m²K and U₀ denote the constant heat transfer component expressed in W/m²K), then the T_{cell} is computed in PVsyst using the Faiman module temperature model, where;

$$T_{cell} = T_a + \left(\frac{\alpha(G)(1 - n_{PVSTC})}{U_0 + U_1 (V_{wind})}\right)$$
(3)

The values of U_0 and U_1 are empirically determined, and some available published values for different installation setups are given in Table 3.

S/N	Description	Uo	Ul
Ι	Semi-integrated with air duct behind	20	0
Π	Current PVSyst default which is for free-standing arrays	29	0
III	Integrated PV module with fully insulated back , that is	15	0
	close roof mounted fully insulated arrays		
IV	Default value in the old version of PVSyst	20	6

Table 3 The values of U_0 and U_1 for different kinds of PV installation setups

3. RESULTS AND DISCUSSIONS

The PVSyst software is used to conduct the thermal loss analysis for the different four different PV installation setups, as shown in Table 3. Specifically, the cell temperature rise above the ambient temperature, thermal loss due to temperature, PV array efficiency and system efficiency are considered. The components sizing for the battery bank and the PV array are shown in Figure 2.

🔀 Stand-alone System defi	nition, Variant "New si	mulation variant	:"	-	- 🗆	×
Presizing help						
Av. daily needs : Enter ac	cepted LOL 5	2 2	Ba	attery (user) voltage	24 -	V 🥐
109 kWh/day Enter rec	uested autonomy 5	day(s) 🥐	Si Si	uggested capacity uggested PV power	25043 Ah 36.7 kWp	o (nom.)
Select battery set						
Sort Batteries by 💿 voltage	——— 🔿 capacity —	() mai	nufacturer			
12 V 150 Ah D	ural SC	Electro	ona		- 🗎	<u>O</u> pen
2 🔁 🔽 Batteries in serie	Nur	mber of batteries	400 Ba	attery pack voltage	24 ∀	
			Gi	obal capacity	30000 Ah	
Batteries in parali			St	ored energy	720 kW	/h
Select module(s)						
Sort modules by: 📀 power	C technology	() ma	nufacturer	All modules	-	
180 Wp 24V Si-poly	CS6P - 180PE	Canadia	an Solar Inc.	Manufacturer 20) 💽 🐴	0pen
1 Modules in serie		The PV array volta slightly undersize	gelis ed Ar	ray voltage at 50°C	24.7∀	
202 🕂 🗖 Modules in paralle			Ar	ray current	1317 A	
202 Modules			Ar	ray nom. power (STI	C) 36.4 kW	/p
€1 ∐ser's needs	🗶 Cancel		🗸 ок		<u>N</u> ext ∎ ⊃	

Figure 2 The selected PV array and battery bank for the power system

The thermal loss factor settings and the thermal loss plot for the four different PV installation setups are shown in Figure 3, Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8. The results in Figure 3 and Figure 4 show that for Case I: Uo= Uc= 20 and U1 =Uv=0, the thermal loss is 8.5 % of the PV array annual energy yield.

For Case II: Uo= Uc= 29 and U1 =Uv=0 in Figure 5 and Figure 6, the thermal loss is 7.4 % of the PV array annual

energy yield, which is confirmed in the system loss diagram of Figure 8. Again, for Case III: Uo= Uc= 15 and U1 =Uv=0 in Figure 7, the thermal loss is 16.7 % of the PV array annual energy yield, while for Case IV: Uo= Uc= 20 and U1 =Uv=6 in Figure 8, the thermal loss percentage is 8.5 % of the PV array annual energy yield.

Thermal parameter Dhmic Losses Module quality - Mismatch	Soiling Loss IAM Losses							
You can define either the Field thermal Loss factor or the standard NOCT coefficient: the program gives the equivalence !								
Field Thermal Loss Factor Standard NOCT factor								
Thermal Loss factor U = Uc + Uv * Wind vel	Alternative definition:							
Constant loss factor Uc 20.0 W/m²k Wind loss factor Uv 0.0 W/m²k / m/s	NOCT coefficient 56 *C							
Default value acc. to mounting	Default value acc. to mounting Temperature of "free" mounted modules in open circuit, under G=800 W/m², Tamb=20°C, Wind velocity = 1m/s.							
 ✓ [Semi-integrated with air duct behind ☐ Integration with fully insulated back 	NOCT definition © Open circuit (at Voc) © Loaded (at Pmpp)							
Euli Back Eosses graph	K Lancei VK							

Figure 3 The PVSyst Dialogue Box For Thermal Loss Factor Setting in Case I: Uo= Uc= 20 and U1 =Uv=0

Figure 4 The Thermal Loss Factor (%) for Case I: Uo= Uc= 20 and U1 =Uv=0

Field Thermal Loss Factor	Standard NOCT factor
Fhermal Loss factor U = Uc + Uv * Wind vel	Alternative definition:
Constant loss factor Uc 🛛 🛛 🛛 🛛 🖓 🖓 🖓	NOCT coefficient 45 °C
Wind loss factor Uv	for "Nominal Operating Collector Temperature"
Default value acc. to mounting	Temperature of "free" mounted modules in open circuit, under G=800 W/m², Tamb=20°C, Wind velocity = 1m/s.
"Free" mounted modules with air circulation Semi-integrated with air duct behind	NOCT definition
Integration with fully insulated back	Open circuit (at Voc) C Loaded (at Pmpp)

Figure 5 The PVSyst Dialogue Box For Thermal Loss Factor Setting in Case II: Uo= Uc= 29 and U1 =Uv=0

Figure 6 The Thermal Loss Factor (%) for Case II: Uo= Uc= 29 and U1 =Uv=0

Figure 7 The PVSyst Dialogue Box and Thermal Loss Factor (%) for Case III: Uo= Uc= 15 and U1 =Uv=0

Figure 8 The PVSyst Dialogue Box and Thermal Loss Factor (%) for Case IV: Uo= Uc= 20 and U1 =Uv=6

The results for the difference between the module temperature and ambient temperature, DTArr (°C) for the four different thermal loss factor setups are shown in Table 4 and Figure 10. The results showed that the annual average value of DTArr for Case II is the lowest with a

value of 37.98°C while that of case III is the highest with a value of 47.49°C. Also, Case I and Case IV have the same annual average DTArr value of 42.66°C.

Table 4 The difference between the module temperature and ambient temperature, DTArr (°C) for the four difference	nt
thermal loss factor settings	

		DTArr (°C) for	DTArr (°C) for	DTArr (°C) for	DTArr (°C) for
		Case 1 : Uo = 20	Case 2 : Uo = 29	Case 3 : Uo = 15	Case 4 : Uo = 20
Month	Month	and U1 = 0	and U1 = 0	and U1 = 0	and U1 = 6
January	1	44.71	39.91	49.88	44.71
February	2	46.83	41.47	52.1	46.83
March	3	44.45	39.04	49.79	44.45
April	4	44.17	38.6	49.73	44.17
May	5	43.54	38.65	48.5	43.54
June	6	40.25	36.22	44.61	40.25
July	7	38.51	34.9	42.4	38.51
August	8	38.49	34.8	42.46	38.49
September	9	41.11	36.81	45.76	41.11
October	10	41.14	36.88	45.73	41.14
November	11	43.63	38.97	48.5	43.63
December	12	45.07	39.52	50.41	45.07
Year Average		42.66	37.98	47.49	42.66

Figure 10 The difference between the module temperature and ambient temperature, DTArr (°C) for the four different thermal loss factor settings

The results for the thermal loss due to temperature, TempLss (kWh) for the four different thermal loss factor setups are shown in Table 5 and FIGURE 11. The results showed that the annual average value of TempLss for Case II is the lowest with a value of 364.86 kWh while that of case III is the highest with a value of 623.83 kWh. Also, Case I and Case IV have the same annual average TempLss value of 488.61 kWh.

Table 5 The thermal loss due to temperature, TempLss (kWh)	for the four different thermal loss factor settings
--	---

Month	Month	TempLss (kWh) for Case 1 : Uo = 20 and U1 = 0	TempLss (kWh) for Case 2 : Uo = 29 and U1 = 0	TempLss (kWh) for Case 3 : Uo = 15 and U1 = 0	TempLss (kWh) for Case 4 : Uo = 20 and U1 = 6
January	1	556.1	419.5	705.2	556.1
February	2	605.8	466.1	758.4	605.8
March	3	594.6	445.9	757.2	594.6
April	4	545.1	407.3	695.7	545.1
May	5	495.2	368	634.2	495.2
June	6	360.9	264.5	466.2	360.9
July	7	342.9	251.5	442.7	342.9
August	8	358	263.8	460.8	358
September	9	439.7	322.4	567.9	439.7
October	10	473	348.6	608.9	473
November	11	478.4	359	608.9	478.4
December	12	613.6	461.7	779.8	613.6
Year Average	13	488.61	364.86	623.83	488.61

Figure 11 The thermal loss due to temperature, TempLss (kWh) for the four different thermal loss factor settings

The results for the PV array efficiency, EffArrR (%) for the four different thermal loss factor setups are shown in Table 6 and Figure 12. The results showed that the annual average value of EffArrR for Case II is the highest with a value of **8.64**% while that of case III is the lowest with a value of **7.94**%. Also, Case I and Case IV have the same annual average EffArrR value of **8.39**%.

Furthermore, results for the System Efficiency, EffSysR(%) for the four different thermal loss factor setups are shown in Table 7 and Figure 13. The results showed that the annual average value of EffSysR for Case II is the highest with a value of 8.05 % while that of case III is the lowest with a value of 7.72 % . Also, Case I and Case IV have the same annual average EffArrR value of 7.97 %.

	Month	EffArrR (%) for Case 1 : Uo = 20 and U1 = 0	EffArrR (%) for Case 2 : Uo = 29 and U1 = 0	EffArrR (%) for Case 3 : Uo = 15 and U1 = 0	EffArrR (%) for Case 4 : Uo = 20 and U1 = 6
January	1	8.41	8.8	7.77	8.41
February	2	7.96	8.15	7.46	7.96
March	3	8.01	8.19	7.72	8.01
April	4	7.78	7.89	7.7	7.78
Мау	5	8.54	8.64	8.14	8.54
June	6	8.71	9.04	8.38	8.71
July	7	8.7	9.04	8.27	8.7
August	8	8.65	9.01	8.1	8.65
September	9	8.66	9.07	8.13	8.66
October	10	8.6	8.9	8.15	8.6
November	11	8.6	8.77	7.89	8.6
December	12	8.11	8.16	7.55	8.11
Year Average		8.39	8.64	7.94	8.39

Table 6 The PV array efficiency, EffArrR (%) for the four different thermal loss factor settings

Figure 12 The PV array efficiency, EffArrR (%) for the four different thermal loss factor settings

	Month	EffSysR(%) for Case 1 : Uo = 20 and U1 = 0	EffSysR(%) for Case 1 : Uo = 29 and U1 = 0	EffSysR(%) for Case 3 : Uo = 15 and U1 = 0	EffSysR(%) for Case 4 : Uo = 20 and U1 = 6
January	1	7.67	7.67	7.67	7.67
February	2	7.32	7.32	7.32	7.32
March	3	7.38	7.38	7.38	7.38
April	4	7.58	7.58	7.58	7.58
May	5	7.84	7.84	7.84	7.84
June	6	8.96	8.96	8.96	8.96
July	7	9.9	9.9	7.87	9.9
August	8	6.9	7.42	7.41	6.9
September	9	8.52	8.52	8.52	8.52
October	10	8.39	8.39	7.1	8.39
November	11	8.07	8.07	7.71	8.07
December	12	7.54	7.54	7.54	7.54
Year Average		8.01	8.05	7.72	7.97

Table 7 The System Efficiency, EffSysR(%) for the four different thermal loss factor settings

Figure 13 The System Efficiency, EffSysR(%) for the four different thermal loss factor settings

4. CONCLUSION

An analysis of the impact of thermal loss factor setup on a standalone PV power system used to supply electric power to a microfinance bank is presented. The PVSyst software is used to simulate the sizing and thermal loss analysis of the standalone power system for different PV installation setups. Particularly, the study considered four different thermal loss factor setups, namely; Case I; Semi-integrated with air duct behind with Uo = 20 and U1 = 0; Case II: free-standing arrays which is the current PVSyst default with Uo =29 and U1 = 0; Case III: integrated PV module with fully insulated back or for a close roof mounted fully insulated PV arrays with Uo =15 and U1 = 0; and Case IV: old version of PVsyst default value with Uo =20 and U1 = 6.

In all, case II which is for free standing PV installation gave the highest PV array efficiency, highest system efficiency, lowest PV module temperature rise above the ambient temperature and finally the lowest thermal loss. On the other hand, case III which is for integrated PV module installation with fully insulated back and also the setting for close roof mounted PV installation gave the lowest PV array efficiency, lowest system efficiency, highest PV module temperature rise above the ambient temperature and finally the highest thermal loss. The implication is that rooftop PV installation suffers more losses than the free standing PV installation. As such, while space is conserved by re-using the roof for the PV installation, there is a trade-off in the reduction in the PV array efficiency and system efficiency.

REFERENCES

- Zhou, B., Li, W., Chan, K. W., Cao, Y., Kuang, Y., Liu, X., & Wang, X. (2016). Smart home energy management systems: Concept, configurations, and scheduling strategies. *Renewable and Sustainable Energy Reviews*, 61, 30-40.
- 2. Strielkowski, W. (2016). Entrepreneurship, sustainability, and solar distributed generation. *Entrepreneurship and Sustainability Issues*, *4*(1), 9.
- Miller, A., Wood, A., Hwang, M., Lemon, S., & Read, E. G. (2015). Economics of photovoltaic solar power and uptake in New Zealand.
- Tongsopit, S., Moungchareon, S., Aksornkij, A., & Potisat, T. (2016). Business models and financing options for a rapid scale-up of rooftop solar power systems in Thailand. *Energy Policy*, 95, 447-457.
- Ellabban, O., & Alassi, A. (2019). Integrated Economic Adoption Model for residential gridconnected photovoltaic systems: An Australian case study. *Energy Reports*, *5*, 310-326.
- Mohanty, P., Muneer, T., & Kolhe, M. (Eds.). (2015). Solar photovoltaic system applications: a guidebook for off-grid electrification. Springer.
- Lu, X., Li, K., Xu, H., Wang, F., Zhou, Z., & Zhang, Y. (2020). Fundamentals and business model for resource aggregator of demand response in electricity markets. *Energy*, 204, 117885.
- 8. Zandi, M., Bahrami, M., Eslami, S., Gavagsaz-Ghoachani, R., Payman, A., Phattanasak, M.,

... & Pierfederici, S. (2017). Evaluation and comparison of economic policies to increase distributed generation capacity in the Iranian household consumption sector using photovoltaic systems and RETScreen software. *Renewable energy*, *107*, 215-222.

- Kannan, N., & Vakeesan, D. (2016). Solar energy for future world:-A review. *Renewable* and Sustainable Energy Reviews, 62, 1092-1105.
- Shinde, H. A., Jha, N. M., & Dalvi, S. D. (2018). A Review on: Experimental Analysis of Rooftop Solar PV modules installation in Educational premises.
- 11. Vincent, E. N., & Yusuf, S. D. (2014). Integrating renewable energy and smart grid technology into the Nigerian electricity grid system. *Smart Grid and Renewable Energy*, 2014.
- Jahangiri, M., Haghani, A., Shamsabadi, A. A., Mostafaeipour, A., & Pomares, L. M. (2019). Feasibility study on the provision of electricity and hydrogen for domestic purposes in the south of Iran using grid-connected renewable energy plants. *Energy Strategy Reviews*, 23, 23-32.
- Borhanazad, H., Mekhilef, S., Ganapathy, V. G., Modiri-Delshad, M., & Mirtaheri, A. (2014). Optimization of micro-grid system using MOPSO. *Renewable Energy*, 71, 295-306.
- 14. Longe, O. M., Ouahada, K., Ferreira, H. C., & Chinnappen, S. (2014, February). Renewable Energy Sources microgrid design for rural area in South Africa. In *ISGT 2014* (pp. 1-5). IEEE.
- 15. Urpelainen, J. (2014). Grid and off-grid electrification: An integrated model with applications to India. *Energy for Sustainable Development*, *19*, 66-71.
- Adaramola, M. S., Paul, S. S., & Oyewola, O. M. (2014). Assessment of decentralized hybrid PV solar-diesel power system for applications in Northern part of Nigeria. *Energy for Sustainable Development*, 19, 72-82.
- Shahzad, M. K., Zahid, A., ur Rashid, T., Rehan, M. A., Ali, M., & Ahmad, M. (2017). Techno-economic feasibility analysis of a solarbiomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. *Renewable energy*, *106*, 264-273.
- Mirzapour, F., Lakzaei, M., Varamini, G., Teimourian, M., & Ghadimi, N. (2019). A new prediction model of battery and wind-solar output in hybrid power system. *Journal of Ambient Intelligence and Humanized Computing*, *10*(1), 77-87.
- 19. Rohani, G., & Nour, M. (2014). Technoeconomical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates. *Energy*, *64*, 828-841.
- 20. Gonzalez, A., Riba, J. R., Rius, A., & Puig, R. (2015). Optimal sizing of a hybrid grid-

connected photovoltaic and wind power system. *Applied Energy*, *154*, 752-762.

- 21. Kouro, S., Leon, J. I., Vinnikov, D., & Franquelo, L. G. (2015). Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology. *IEEE Industrial Electronics Magazine*, 9(1), 47-61.
- 22. Kusakana, K. (2015). Optimal scheduled power flow for distributed photovoltaic/wind/diesel generators with battery storage system. *IET Renewable Power Generation*, *9*(8), 916-924.
- Rahman, M. M., Hasanuzzaman, M., & Rahim, N. A. (2015). Effects of various parameters on PV-module power and efficiency. *Energy Conversion and Management*, 103, 348-358.
- 24. Bingöl, O., & Özkaya, B. (2018). Analysis and comparison of different PV array configurations under partial shading conditions. *Solar Energy*, *160*, 336-343.
- Kazem, H. A., & Chaichan, M. T. (2015). Effect of humidity on photovoltaic performance based on experimental study. *International Journal of Applied Engineering Research (IJAER)*, 10(23), 43572-43577.
- 26. Fouad, M. M., Shihata, L. A., & Morgan, E. I. (2017). An integrated review of factors influencing the perfomance of photovoltaic panels. *Renewable and Sustainable Energy Reviews*, *80*, 1499-1511.
- Benghanem, M., Al-Mashraqi, A. A., & Daffallah, K. O. (2016). Performance of solar cells using thermoelectric module in hot sites. *Renewable Energy*, *89*, 51-59.
- Kaldellis, J. K., Kapsali, M., & Kavadias, K. A. (2014). Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece. *Renewable Energy*, 66, 612-624.
- Ciulla, G., Brano, V. L., Di Dio, V., & Cipriani, G. (2014). A comparison of different one-diode models for the representation of I–V characteristic of a PV cell. *Renewable and Sustainable Energy Reviews*, *32*, 684-696.
- Eldin, S. S., Abd-Elhady, M. S., & Kandil, H. A. (2016). Feasibility of solar tracking systems for PV panels in hot and cold regions. *Renewable Energy*, *85*, 228-233.
- 31. Mermoud, A., & Wittmer, B. (2014). PVSYST user's manual. *Switzerland, January*.
- Edifon, A. O. I., Edwin, N. I., & Macaulay, E. U. (2016). Comparative analysis of the performance of different photovoltaic (pv) technologies based on PVsyst thermal model. Science Journal of Energy Engineering, 4(6), 62-67.