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Abstract— This paper presents the modelling of 
the piezoelectric energy harvester beam to 
operate in pitch and plunge motion with a view to 
evaluating the performance analyses of the 
modelled piezoelectric energy harvester. The 
airfoil for the plunge and pitch motion models 
were derived using first principles techniques. 
Analyses of the steady state pitch and plunge 
voltage and current First Resonance Frequencies 
of the damped bimorph for a broad range of load 
resistance were carried out. The piezo-aeroelastic 
energy harvester gave an appreciable 
improvement in power generation at low wind 
speed capable of supporting many wireless 
sensor applications. 
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I. INTRODUCTION 

Energy harvesting is the process of extracting small amount 

of energy from ambient environment through various 

sources of energy. Energy harvesting is not a new concept; 

in essence it has been practiced for decades in the context 

of windmills to harness energy from wind, in hydroelectric 

generators to harvest energy from moving water, and in 

solar panels that draw energy from the sun. However, what 

is new with energy harvesting technology is how to design 

and implement efficient energy harvesting techniques into 

modern embedded systems while satisfying all their 

constraints (Rizman et al., 2018; Hu et al., 2018; Podder et 

al., 2016). For any energy harvesting system to be 

considered attractive, it should allow miniaturization and 

integration using the present MEMS technology, otherwise 

it is not very useful. Eruk and Inman (2011) reported that 

mechanical energy in form of ambient vibrations, fluid 

flow, machine rotations, and biomotion presents a source of 

energy that is available widely and at all times. 

Piezoelectric materials can be used to harvest this energy 

since they have the unique ability of converting mechanical 

strain energy into useful electrical energy (Sarker et al., 

2016; Harne and Wang, 2016; Zeng et al., 2016; Ono et al., 

2016). 

Traditionally, batteries are used as the electrical energy 

power sources to power wireless sensors and embedded 

electronics. However, batteries have a limited life span and 

they are expensive to maintain and hence they are not a 

long-term viable source of energy for WSNs and embedded 

systems. In fact, the limited capacity of batteries is one of 

the main factors constraining the performance and limiting 

the lifespan of a typical WSN (Adhikari et al., 2009). 

Energy harvesting is the most promising way of 

overcoming the challenges currently presented by finite life 

power sources like batteries. The process of energy 

harvesting involves the harnessing of ambient energy from 

within the vicinity of the sensor device and converting this 

energy into usable electrical energy. Compared to batteries, 

energy harvesting presents a potentially infinite source of 

energy for powering wireless sensor devices and embedded 

electronics in general (Briscoe and Dunn, 2014; Alper, 

2009).  

In recent years, piezoelectric energy harvesting has been 

setting the pace in energy scavenging due to its many 

advantages. Piezoelectric energy harvesters are devices that 

convert ambient environmental vibration into electrical 

energy by absorbing ambient vibrations (Kiran et al., 2014; 

Yuan et al., 2018). 

 

 

II. DERIVATION OF AIRFOIL PLUNGE AND 

PITCH MOTION 

It is important to know how the aerodynamic 

forces, impact the behavior of the piezoelectric beam 

attached at the trailing edge of the airfoil.  In order to study 

the aeroelastic behavior of the airfoil, the aerodynamic 

forces acting on the airfoil shall first be obtained by 

considering a quasi-steady condition. 

 Alighanbari (1995) in his work developed the lift 

and moment generated by a 2D airfoil under quasi-steady 

state conditions as: 

𝐿(ℎ, 𝛼) =
𝜋𝜌𝑐2(ℎ′′ + 𝑉𝛼′ − 𝑐𝛼ℎ𝛼′′) +

2𝜋𝜌𝑉𝑐𝐶(𝑘)[ℎ + 𝑉𝛼 + 𝑐(0.5 − 𝛼ℎ)𝛼′̇ ]      (1) 

 

𝑀(ℎ, 𝛼) = 𝜋𝜌𝑐2 [𝑐𝛼ℎℎ′′ − 𝑉𝑐(0.5 − 𝛼ℎ)𝛼′ −

𝑐2 (
1

8
+ 𝛼ℎ

2) 𝛼′′] +

2𝜋𝜌𝑉𝑐2(0.5 + 𝛼ℎ)𝐶(𝑘)[ℎ + 𝑉𝛼 + 𝑐(0.5 − 𝛼ℎ)𝛼′̇ ]      

   (2) 

where 𝜌 is air density, c is the length of the airfoil semi-

chord, 𝜇 is the airfoil-air mass ratio, 𝑉 is the velocityof air 

speed, 𝛼ℎ  is the nondimensional distance measured from 

airfoil mid-chord to elastic axis, 𝐶(𝑘)  is the Theodorsen 
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function, 𝛼 is the pitch angle of the airfoil, prime denotes 

differentiation with respect to non-dimensional time,  𝑘is a 

complex function of reduced frequency  (𝑘 =
𝜔𝑐

𝑉
)and 𝜔  is 

the frequency of oscillations. If the NASA Langley rational 

function is adopted herewith as given by Jeffrey (1990), 

then an approximate rational function for 𝐶(𝑘) is expressed 

as:  

𝐶(𝑘) = 𝐴0 + 𝐴1𝑖𝑘 + 𝐴2𝑖𝑘2 +
𝐴3𝑖𝑘

𝑖𝑘+𝑏1
+

𝐴4𝑖𝑘

𝑖𝑘+𝑏2
+

𝐴5𝑖𝑘

𝑖𝑘+𝑏3
+

𝐴6𝑖𝑘

𝑖𝑘+𝑏4
    (3) 

where 𝑏1 =  0.014919,  𝑏2 =  0.080715, 𝑏3 =   0.238540, 

𝑏4 =  0.687273 , 𝐴0 =  0.998585 , 𝐴1 = −0.000078 , 

𝐴2 =  0.000012 ,  𝐴3 =  −0.040125,  𝐴4 =  −0.152297,  

𝐴5 =  0.227080 , and  𝐴6 =  −0.078005 . 
If the effect of vortex shedding induced by the 

uncoupled beam section is factored into Equation 1 and 

Equation 2, the lift and pitching moments is then expressed 

as: 

𝐿(ℎ, 𝛼) =
𝜋𝜌𝑐2(ℎ′′ + 𝑉𝛼′ − 𝑐𝛼ℎ𝛼′′) +

2𝜋𝜌𝑉𝑐𝐶(𝑘)[ℎ + 𝑉𝛼 + 𝑐(0.5 − 𝛼ℎ)𝛼′̇ ] + 𝐿𝑣, (4a) 

𝑀(ℎ, 𝛼) = 𝜋𝜌𝑐2 [𝑐𝛼ℎℎ′′ − 𝑉𝑐(0.5 − 𝛼ℎ)𝛼′ −

𝑐2 (
1

8
+ 𝛼ℎ

2) 𝛼′′] +

2𝜋𝜌𝑉𝑐2(0.5 + 𝛼ℎ)𝐶(𝑘)[ℎ + 𝑉𝛼 + 𝑐(0.5 − 𝛼ℎ)𝛼′̇ ] + 𝑀𝑣

  (4b) 

where 𝐿𝑣 and 𝑀𝑣 are vortex induced lift and moment of the 

uncoupled piezoceramic cantilever beam.  

 Considering the effect mass of the uncoupled 

beam and the lift vortex sheet generated by the attached 

piezoelectric cantilever beam. Since the vortex force 

opposes the accelerating force of the uncoupled section of 

the airfoil, the resultant effect of the forces is given as the 

summation of the sectional attached mass and vortex lift 

force as: 

𝐿ℎ = −
𝜌𝑐2𝛾2

72𝜋ℎ
sin 𝜃 − 𝜌𝑐

𝑐3

108
ℎ′′  (5) 

According to Anderson (2001), the pitching moment of 

vortex taken about the airfoil elastic axis is given by: 

𝑀𝑣 =
𝜌𝑐𝛾2

12𝜋𝛼
  (6) 

where 𝛼  is the pitch angle, 𝜌  is air density, 𝛾 is vortex 

strength per unit length and c is the semi-cord. 

Hence, the lift and pitching moment generated by 

the aeroelastic system with vortex shedding effects of 

uncoupled airfoil are:  

𝐿𝑠(ℎ, 𝛼) =
𝜋𝜌𝑐2(ℎ′′ + 𝑉𝛼′ − 𝑐𝛼ℎ𝛼′′) +

2𝜋𝜌𝑉𝑐𝐶( 𝑘)[ℎ + 𝑉𝛼 + 𝑐(0.5 − 𝛼ℎ)𝛼′̇ ] − (
𝜌𝑐2𝛾2

72𝜋ℎ
sin 𝜃 +

𝜌𝑐
𝑐3

108
ℎ′′)     (7) 

𝑀𝑠(ℎ, 𝛼) = 𝜋𝜌𝑐2 [𝑐𝛼ℎℎ′′ − 𝑉𝑐(0.5 − 𝛼ℎ)𝛼′ −

𝑐2 (
1

8
+ 𝛼ℎ

2) 𝛼′′] +

2𝜋𝜌𝑉𝑐2(0.5 + 𝛼ℎ)𝐶(𝑘)[ℎ + 𝑉𝛼 + 𝑐(0.5 − 𝛼ℎ)𝛼′̇ ] +
𝜌𝑐𝛾2

12𝜋𝛼

 (8) 
 

III. RESPONSE OF AIRFOIL HEAVING AND 

PITCHING MOTIONS 

In other to derive the forced response when the 

system is subjected to a series of harmonic excitations, the 

steady state Frequency Response Function (FRF) for plunge 

can be derived from Equation 7 and Equation 8. This is 

achieved by equating the two lifts equations (Euqation 8 

and Equation 7) and rearranging the resulting equation so 

that 𝜉(𝜏) and 𝛼(𝜏) are separated on either side of the 

equation, then the equationis expressed as: 

[ℓℎ1 + 𝜋𝑒1𝜌𝑐3 +
𝑒1𝜌𝑐𝑐4

108
] 𝜉′′(𝜏) + 𝜁𝜉

1

𝑈
𝜉′(𝜏) +

[ℓℎ4 − 2𝜋𝑒1𝜌𝑉𝑐2𝐶(𝑘)]𝜉(𝜏) + [ℓℎ2 −
𝑒1𝜌𝑐𝛾2

72𝜋
] 𝜉(𝜏)−1 =

[ℓℎ3𝑥𝛼 − 𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼′′(𝜏) + 2𝜋𝑒1𝜌𝑉𝑐2(0.5 −
𝛼ℎ)𝐶(𝑘)𝛼′(𝜏) + 2𝜋𝑒1𝜌𝑐𝑉2𝐶(𝑘)𝛼(𝜏)  

  (9) 

where 𝑒1 = 𝑐2

𝑚𝑎𝑈2⁄  

Rewriting the left hand side of Equation 9 in the following 

standard form as: 

𝑎𝜉′′(𝜏) + 2𝜁𝜉
∗𝜔ℎ

∗ 𝜉′(𝜏) + 𝜔ℎ
∗2𝜉(𝜏) + 𝑁𝑣

∗𝜉(𝜏)−1 =

[ℓℎ3𝑥𝛼 − 𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼′′(𝜏) + 2𝜋𝑒1𝜌𝑉𝑐2(0.5 −
𝛼ℎ)𝐶(𝑘)𝛼′(𝜏) + 2𝜋𝑒1𝜌𝑐𝑉2𝐶(𝑘)𝛼(𝜏)   

   (10) 

where 𝜔ℎ
∗ = √[ℓℎ4 − 2𝜋𝑒1𝜌𝑉𝑐2𝐶(𝑘)] ,  𝜁𝜉

∗ =
𝜁𝜉

2𝜔ℎ
∗ 𝑈

=

𝜁𝜉

2𝑈√[ℓℎ4−2𝜋𝑒1𝜌𝑉𝑐2𝐶(𝑘)]
,  𝑎 = [ℓℎ1 + 𝜋𝑒1𝜌𝑐3 +

𝑒1𝜌𝑐𝑐4

108
] 

and 𝑁𝑣
∗ = [ℓℎ2 −

𝑒1𝜌𝑐𝛾2

72𝜋
]. 

       

In order to transform the pitching force components on the 

right hand side of Equation 10, a pitching displacement of 

the exponential function is assumed as: 

𝛼(𝜏) = 𝛼0𝑒𝜔𝛼𝜏  (11) 

All the pitching motion components in Equation 10 will be 

replaced by Equation 11, (that is its first and second 

derivatives 𝛼′(𝜏) = 𝜔𝛼𝛼0𝑒𝜔𝛼𝜏 and 𝛼′′(𝜏) = 𝛼0𝜔𝛼
2𝑒𝜔𝛼𝜏 . 

Therefore, if these are substituted in Equation 3.35, then: 

𝑎𝜉′′(𝜏) + 2𝜁𝜉
∗𝜔ℎ

∗ 𝜉′(𝜏) + 𝜔ℎ
∗2𝜉(𝜏) + 𝑁𝑣

∗𝜉(𝜏)−1 =

[ℓℎ3𝑥𝛼 − 𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼
2𝑒𝜔𝛼𝜏 + 2𝜋𝑒1𝜌𝑉𝑐2(0.5 −

𝛼ℎ)𝐶(𝑘)𝛼0𝜔𝛼𝑒𝜔𝛼𝜏 + 2𝜋𝑒1𝜌𝑐𝑉2𝐶(𝑘)𝛼0𝑒𝜔𝛼𝜏  (12) 

In Equation 3.37, the solution is that of a forced vibration 

response since the airfoil is dynamically excited. The initial 

conditions induced a free vibration 𝜉0 at the initial heaving 

motion and the solution consists of the following 

components. 

𝜉 = 𝜉0 + 𝜉1 + 𝜉2 + 𝜉3  (13) 

Assuming 𝜉0 = 0, (free vibration) and: 

𝑎𝜉1
′′(𝜏) + 2𝜁𝜉

∗𝜔ℎ
∗ 𝜉1

′(𝜏) + 𝜔ℎ
∗2𝜉1(𝜏) +

𝑁𝑣
∗𝜉1(𝜏)−1 = [ℓℎ3𝑥𝛼 − 𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼

2𝑒𝜔𝛼𝜏   (14) 

The solution of the nonhomogeneous ordinary differential 

equation (ODE) in Equation 14 is made up of both the 

homogeneous and particular solutions. Hence, the solution 

of the first component is: 

𝜉1 = 𝜉1𝐻 + 𝜉1𝑃   (15) 

The homogeneous or complementary equation is: 

𝑎𝜉1
′′(𝜏) + 2𝜁𝜉

∗𝜔ℎ
∗ 𝜉1

′(𝜏) + 𝜔ℎ
∗2𝜉1(𝜏) + 𝑁𝑣

∗𝜉1(𝜏)−1 = 0  (16) 

 Assuming the solution of Equation 16 is of the 

form 𝜉1(𝜏) = 𝜉0𝑒𝜆𝜏, and differentiating the equation up to 

the second derivatives: 

𝜉1(𝜏) = 𝜉0𝑒𝜆𝜏,  𝜉1
′(𝜏) = 𝜉0𝜆𝑒𝜆𝜏, 𝜉1

′′(𝜏) = 𝜉0𝜆2𝑒𝜆𝜏   (17) 

Substituting Equation 16 into Equation 17 and rearranging: 

𝜉0𝑒𝜆𝜏[𝑎𝜆2 + 2𝜁𝜉
∗𝜔ℎ

∗ 𝜆 + 𝜔ℎ
∗2] = −

1

𝜉0
𝑁𝑣

∗𝑒−𝜆𝜏 (18) 

Multiplying Equation 18 through by 𝑒𝜆𝜏 

𝑒2𝜆𝜏[𝑎𝜆2 + 2𝜁𝜉
∗𝜔ℎ

∗ 𝜆 + 𝜔ℎ
∗2 + 𝑁𝑣

∗] = 𝜉0
−2

 (19) 
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The resulting characteristic equations are: 

𝑒2𝜆𝜏 = 𝜉0
−2, 𝑎𝜆2 + 2𝜁𝜉

∗𝜔ℎ
∗ 𝜆 + (𝜔ℎ

∗2 + 𝑁𝑣
∗) = 0  (20) 

The first part of Equation 20 is not a valid characteristic 

equation since it will not yield valid roots. This is why the 

solution and roots determination were done using only the 

second part of the equation. Using the quadratic equation 

formula (𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
) to find the roots of Equation 20. 

Therefore the roots of the quadratic equation in Equation 20 

are: 

𝜆1 = − 1
𝑎⁄ 𝜁𝜉

∗𝜔ℎ
∗ + 1

2𝑎⁄ √4𝜁𝜉
∗2𝜔ℎ

∗2 − 4𝑎(𝜔ℎ
∗2 + 𝑁𝑣

∗),  

𝜆2 = − 1
𝑎⁄ 𝜁𝜉

∗𝜔ℎ
∗ − 1

2𝑎⁄ √4𝜁𝜉
∗2𝜔ℎ

∗2 − 4𝑎(𝜔ℎ
∗2 + 𝑁𝑣

∗)   (21) 

The values of the roots in Equation 3.46 are not constant 

and this will determine to a greater extent what the response 

of the plunge motion of the airfoil will be. This shows that 

the critical damping, 𝜁𝜉
∗, circular frequencies 𝜔ℎ

∗   and vortex 

aerodynamic load 𝑁𝑣
∗ of the system plays a very important 

role in determining the nature of heaving motion of the 

airfoil, and their values should be chosen with care in order 

to obtain better results. Since the roots are unequal, the 

general solution of the homogeneous part of 𝜉1, is the sum 

of the two solution components, where 𝐴and 𝐵are constants 

of plunge homogeneous equation. 

𝜉1𝐻 = 𝐴𝑒𝜆1𝜏 + 𝐵𝑒𝜆2𝜏  (22) 

The particular solution of 𝜉1, needs to be form, by choosing 

a function similar to 

𝑓(𝜏) = [ℓℎ3𝑥𝛼 − 𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼
2𝑒𝜔𝛼𝜏 . In forming the 

particular solution 𝜉1𝑃 , it should be noted that 𝑓(𝜏) is the 

right hand side of Equation 14. 𝜉1𝑃 = 𝐶𝑒𝜔𝛼𝜏 was proposed 

for the particular solution and if the derivatives of the 

equation are taken up to the second differential, then: 

𝜉1𝑃 = 𝐶𝑒𝜔𝛼𝜏, 𝜉1𝑃
′ = 𝜔𝛼𝐶𝑒𝜔𝛼𝜏, 𝜉1𝑃

′′ = 𝜔𝛼
2𝐶𝑒𝜔𝛼𝜏   (23) 

Substitute the components of Equation 23 in Equation 14, 

and rearrange accordingly, then: 

[𝑎𝜔𝛼
2 + 2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼 + 𝜔ℎ

∗2]𝐶𝑒2𝜔𝛼𝜏 +
𝑁𝑣

∗

𝐶
= [ℓℎ3𝑥𝛼 −

𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼
2𝑒2𝜔𝛼𝜏     (24) 

Solving for the value of the constant, 𝐶.  
𝑁𝑣

∗

𝐶
= 0,  𝐶 =

[ℓℎ3𝑥𝛼−𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼
2

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
   

   Equation 25 

From Equation 25, only valid value for particular solution 

is the nonzero value of 𝐶, and hence: 

𝜉1𝑃 =
[ℓℎ3𝑥𝛼−𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼

2

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
𝑒𝜔𝛼𝜏   (25) 

The solution of the first component of the heaving motion 

is: 

𝜉1 = 𝜉1𝐻 + 𝜉1𝑃, 

 𝜉1 = 𝐴𝑒𝜆1𝜏 + 𝐵𝑒𝜆2𝜏 +
[ℓℎ3𝑥𝛼−𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼

2

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
𝑒𝜔𝛼𝜏

    (26) 

In order to obtain the values for the constants 𝐴 and 𝐵 , 

respectively, the initial conditions of the system which 

states that at the time ( 𝜏 = 0 ) just before motion 

commences, the plunge displacement and velocity remains 

zero, would be applied. That is: 

𝜉1(0) = 0, 𝜉1
′(0) = 0     (27) 

Substituting Equation 27 into Equation 26, we have: 

𝐴 + 𝐵 = −
[ℓℎ3𝑥𝛼−𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼

2

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
     (28) 

𝜆1𝐴 + 𝜆2𝐵 = −
[ℓℎ3𝑥𝛼−𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼

3

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
    (29) 

From Equation 3.54, the expression of  𝐴, was obtained in 

terms of 𝐵. 

𝐴 = −
[ℓℎ3𝑥𝛼−𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼

2

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
− 𝐵     (30) 

Substituting Equation 30 into Equation 29, then: 

−𝜆1
[ℓℎ3𝑥𝛼−𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼

2

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
− (𝜆2 − 𝜆1)𝐵 =

𝜔𝛼[ℓℎ3𝑥𝛼−𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼
2

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
                    (31) 

Solving Equation 31, the expression for constant 𝐵, is: 

𝐵 =
(𝜔𝛼−𝜆1)[ℓℎ3𝑥𝛼−𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼

2

(𝜆2−𝜆1)[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
     (32) 

Also, substituting the value 𝐵 in Equation 30,  𝐴  can be 

expressed as: 

𝐴 =
(𝜔𝛼−𝜆2)[ℓℎ3𝑥𝛼−𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼

2

(𝜆2−𝜆1)[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
   (33) 

Substituting the values of 𝐴 and 𝐵, in Equation 26, and with 

proper rearrangements, then: 

𝜉1 =
[ℓℎ3𝑥𝛼−𝜋𝑒1𝜌𝑐3𝛼ℎ]𝛼0𝜔𝛼

2

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
{

(𝜔𝛼−𝜆2)

(𝜆2−𝜆1)
𝑒𝜆1𝜏 +

(𝜔𝛼−𝜆1)

(𝜆2−𝜆1)
𝑒𝜆2𝜏 +

𝑒𝜔𝛼𝜏}      (34) 

In a similar manner, the other heaving motion components 

were obtained and expressed as: 

𝜉2 =
2𝜋𝑒1𝜌𝑉𝑐2(0.5−𝛼ℎ)𝐶(𝑘)𝛼0𝜔𝛼

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
{

(𝜔𝛼−𝜆2)

(𝜆2−𝜆1)
𝑒𝜆1𝜏 +

(𝜔𝛼−𝜆1)

(𝜆2−𝜆1)
𝑒𝜆2𝜏 +

𝑒𝜔𝛼𝜏}     (35) 

𝜉3 =
2𝜋𝑒1𝜌𝑐𝑉2𝐶(𝑘)𝛼0

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
{

(𝜔𝛼−𝜆2)

(𝜆2−𝜆1)
𝑒𝜆1𝜏 +

(𝜔𝛼−𝜆1)

(𝜆2−𝜆1)
𝑒𝜆2𝜏 +

𝑒𝜔𝛼𝜏}     (36) 

In other to obtain, the heaving motion final frequency 

response function (FRF), the principle of superposition of 

waves forms were applied as already expressed in Equation 

16, and by substituting the components in Equations 34, 

Equation 35, and Equation 36, into Equation 16 yeilds: 

𝜉 =
𝐴∗𝛼0

[𝑎𝜔𝛼
2+2𝜁𝜉

∗𝜔ℎ
∗ 𝜔𝛼+𝜔ℎ

∗2]
{

𝑒
−1

𝑎⁄ 𝜁𝜉
∗ 𝜔ℎ

∗ 𝜏

(𝜆2−𝜆1)
[2𝜔𝛼sinh(𝑤𝑓𝜏) +

(𝜆1𝑒−𝑤𝑓𝜏 − 𝜆2𝑒𝑤𝑓𝜏)] + 𝑒𝜔𝛼𝜏}     (37) 

where 𝐴∗ = [ℓℎ3𝑥𝛼 − 𝜋𝑒1𝜌𝑐3𝛼ℎ]𝜔𝛼
2 + 2𝜋𝑒1𝜌𝑉𝑐2(0.5 −

𝛼ℎ)𝐶(𝑘)𝜔𝛼 + 2𝜋𝑒1𝜌𝑐𝑉2𝐶(𝑘) , 𝛼0 =1, 

sinh =
𝑒𝑤𝑓𝜏−𝑒−𝑤𝑓𝜏

2
and 𝑤𝑓 =

1
2𝑎⁄ √4𝜁𝜉

∗2𝜔ℎ
∗2 − 4𝑎(𝜔ℎ

∗2 + 𝑁𝑣
∗) 

The same procedure was equally applied to the pitching 

motion forced response when the system is subjected to a 

series of harmonic excitations. This is expressed as: 

 

𝛼 =
𝐴∗∗𝜉0

[𝑎𝜔ℎ
2+2𝜁𝛼

∗ 𝜔𝛼
∗ 𝜔ℎ+𝜔𝛼

∗2]
{

𝑒
−1

𝑎⁄ 𝜁𝜉
∗ 𝜔ℎ

∗ 𝜏

(𝜆1
∗−𝜆2

∗
)

[(𝜆2
∗𝑒𝑤𝑓

∗𝜏 −

𝜆1
∗𝑒𝑤𝑓

∗𝜏) − 2𝜔ℎ𝑠𝑖𝑛ℎ(𝑤𝑓
∗𝜏)] + 𝑒𝜔ℎ𝜏}    (38) 
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where 𝐴∗∗ = [(𝜘ℎ1 +
𝑥𝛼

𝜏𝛼
2 ) − 𝜋𝑒2𝜌𝑐4𝛼ℎ] 𝜔ℎ

2 + [𝜘ℎ2 (
𝜔̅

𝑈
)

2

−

2𝜋𝑒2𝜌𝑉𝑐3(0.5 + 𝛼ℎ)𝐶(𝑘)] 

𝑤𝑓
∗ = 1

2𝑎⁄ √4𝜁𝛼
∗2𝜔𝛼

∗2 − 4𝑎(𝜔𝛼
∗2 + 𝑁𝑣

∗∗) , 𝜉0 =1,  𝜔𝛼
∗ =

√
1

𝑈2 − 2𝜋𝑒2𝜌𝑉2𝑐2(0.5 + 𝛼ℎ),  

𝜁𝛼
∗ =

[𝜁𝛼
1

𝑈
+𝜋𝑒2𝜌𝑉𝑐3(0.5−𝛼ℎ)−2𝜋𝑒2𝜌𝑉𝑐3(0.5−𝛼ℎ)]

2√
1

𝑈2−2𝜋𝑒2𝜌𝑉2𝑐2(0.5+𝛼ℎ)
,  𝜆1

∗ =

− 1
𝑎⁄ 𝜁𝛼

∗ 𝜔𝛼
∗ + 1

2𝑎⁄ √4𝜁𝛼
∗2𝜔𝛼

∗2 − 4𝑎(𝜔𝛼
∗2 + 𝑁𝑣

∗∗) , 𝜆2
∗ =

− 1
𝑎⁄ 𝜁𝛼

∗ 𝜔𝛼
∗ − 1

2𝑎⁄ √4𝜁𝛼
∗2𝜔𝛼

∗2 − 4𝑎(𝜔𝛼
∗2 + 𝑁𝑣

∗∗)  and 

sinh =
𝑒𝑤𝑓𝜏−𝑒−𝑤𝑓𝜏

2
. 

 

 

IV. AEROELASTIC ENERGY HARVESTER 

RESULTS UNDER QUASI-STEADY 

AERODYNAMICS OF AIRFOIL BASE 

EXCITATION 

 

The analysis given here considers the frequency 

range of 0 - 1000 Hz, and it can be shown that this 

cantilever has three vibration modes in this frequency 

range. In the previous section, the optimum aerodynamic 

parameters were determined for the quasi-steady excitation 

of the airfoil base structure. These aerodynamic parameters 

decide to a great extent how much voltage, current and 

power is generated by the piezoelectric energy harvester. 

Considering the first three vibration modes, the 

fundamental mode of vibration as shown in Figure 3, is 

accompanied with two strain nodes. 

 
Figure 3: First three vibration mode shapes of the cantilevered beam energy harvester 

 

Frequency Response of the Voltage Output under 

Quasi-Steady Aerodynamic Airfoil Base Excitation 

 

The analytical simulation results are given in this 

section. The base of the cantilever is assumed to be rotating 

as the airfoil pitch under the influence of aerodynamic 

flutter. The series connection case is considered first. This 

analysis is carried out around the air flow speed with which 

flutter has been determined to have occurred. It is at this 

point that the aeroelastic system exhibits the highest level 

or quantity of vibratory energy. The set of electrical load 

resistance considered here ranges from 0.33 𝑇Ω to 33 𝑃Ω. 

The lowest resistance (𝑅𝑙 = 0.33 𝑇Ω ) used here is very 

close to the short-circuit conditions while the largest load 

(𝑅𝑙 = 33 𝑃Ω) is very close to the open-circuit conditions.  

http://www.imjst.org/


International Multilingual Journal of Science and Technology (IMJST) 

ISSN: 2528-9810 

Vol. 6 Issue 4, April - 2021 

www.imjst.org 

IMJSTP29120552 3471 

 
Figure 4: Steady state plunge voltage FRFs of the bimorph for a specific range of load 

resistance 

 

The voltage output FRFs graphs in Figure 4, 

Figure 5 and Figure 6, shows the voltage FRFs when the 

base structure is undergoing flutter under quasi-steady 

conditions and otherwise known as the damped airfoil. The 

contribution of the plunge and pitch motions of the base 

acceleration, and superimposition of both constitute the 

total voltage produced by the harvester. In studying the 

behavior of the system, the load resistance is increased 

from short-circuit to open-circuit conditions, and this shows 

that the voltage output at each frequency increases. The 

short-circuit condition is defined as load resistance 

approaches 0.33 𝑇Ω and the open-circuit condition defined 

as load resistance reaches 33 𝑃Ω . The simulation results 

showed that the load resistance range stipulated outside this 

range (0.3 𝑇Ω − 33 𝑃Ω) , cause the system not to attain 

resonance most especially at higher vibration modes, 

resulting in very low voltage generation. An important 

aspect of the voltage FRFs plotted in voltage output, which 

shows that at increasing the load resistance, the voltage 

output at each frequency converges to its maximum value 

as system attain each vibration mode’s resonance. The 

short-circuit and open-circuit resonance frequencies of each 

vibration mode remain equally the same as one moves from 

the short-circuit load resistance (𝑓𝑟
𝑆𝐶 for 𝑅𝑙 → 0.33 𝑇Ω) to 

the open-circuit load resistance (𝑓𝑟
𝑂𝐶 for 𝑅𝑙 → 33 𝑃Ω).  
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Figure 5: Steady state pitch voltage FRFs of the damped bimorph for a broad range of 

load resistance 

 
Figure 6: Steady state total voltage FRFs of the damped bimorph for a specific range of 

load resistance 

  It can be seen from the voltage output graphs (as 

shown in Figure 4, Figure 5 and Figure 6) that the voltage 

generated by a given piezoelectric energy harvester depends 

on the resonance frequency and external load resistance 

used in configuring the electrical circuit. The system 

reached its open-circuit condition at a load resistance of 
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𝑅𝑙 = 333 𝑇Ω for the plunge, pitch and system voltage FRFs 

responses. Short-circuit and open-circuit resonance 

frequencies of the first three modes are listed in Table 1. 

Table 1: First three short-circuit and open-circuit 

resonance frequencies read from the  

       voltage FRF of the bimorph piezoelectric aeroelastic 

energy harvester 

Mode (𝒓) 𝒇𝒓
𝑺𝑪[𝑯𝒛] 𝒇𝒓

𝑶𝑪[𝑯𝒛] 
1 76.50 76.05 

2 302.00 302.00 

3 676.50 676.50 

 

It is observed throughout the presentation of the 

voltage FRFs that the plunge motion contribution to the 

voltage FRFs output is basically higher than the pitch 

motion from aerodynamic excitation of the airfoil base 

structure under quasi-steady conditions. For the three mode 

of vibration, the maximum generated voltage output at each 

resonance frequency of the system is tabulated in Table 2. It 

can be seen from the results that the first mode does not 

produce maximum voltage due to interaction of the airfoil 

base aerodynamics with the structural dynamics of the 

piezoelectric cantilever beam. This lead to reshuffling or 

cancellation of the strain nodes along the beam’s length, 

reducing and later progresses as vibration modes increases. 

For the plunge motion (as shown in Table 2), the third 

mode produces the highest voltage contribution (𝑉 =
8650 𝑚𝑉)  while the first contributes the least (𝑉 =
7.56𝑚𝑉). It can be seen for the pitch motion, mode two 

registered a high voltage FRF output of 𝑉 = 19060𝑚𝑉 and 

mode one contributed just small voltage FRF value of  

𝑉 = 3074 𝑚𝑉 . In conclusion, the second mode that 

produce the highest voltage FRF output under quasi-steady 

conditions with a value of  𝑉 = 19210 𝑚𝑉.  

Table 2: Maximum voltage FRFs output of the bimorph 

piezoelectric aeroelastic 

                           harvester at resonance frequencies of 

the first three modes 
Mode 

(𝒓) 

𝒇𝒓[𝑯𝒛] Plunge 

Voltage 

[𝒎𝑽] 

Pitch 

Voltage 

[𝒎𝑽] 

System 

Voltage 

[𝒎𝑽] 
1 76.50 7.56 3074 3212 

2 302.00 77.13 19060 19210 

3 676.50 8650 3804 12400 

 

The mechanical resonance frequency does not depend on 

the load resistance of the circuit neither does the electrical 

resonance frequency, rather it is strongly affected by the 

structural properties of the composite bimorph beam. In 

comparing, mode one mechanical resonance frequency is 

slightly lower than its counterpart short-circuit and open-

circuit resonance frequency with 𝑓𝑟 = 75.96 𝐻𝑧  and 

𝑓𝑟
𝑆𝐶 = 𝑓𝑟

𝑂𝐶 = 76.50 𝐻𝑧. There is a different trend observed 

in the second mode of vibration, where it is discovered that 

the mechanical resonance frequency tends to be a bit lower 

than its corresponding short-circuit and open-circuit 

resonance frequencies with 𝑓𝑟 = 300.0 𝐻𝑧 , and 𝑓𝑟
𝑆𝐶 =

𝑓𝑟
𝑂𝐶 = 302.0 𝐻𝑧. The second mode of vibration of the base 

structure is the pitching of the airfoil wing, which is why 

this drop in electrical resonance frequency away from its 

equivalent mechanical resonance frequency is accompanied 

with a drop in voltage FRF output amplitude resulting from 

the airfoil pitch motion contribution as shown in Figure 1. 

In the third mode’s electrical resonance frequency increases 

from its mechanical resonance frequency from 𝑓𝑟 =
676.0 𝐻𝑧 , to 𝑓𝑟

𝑆𝐶 = 𝑓𝑟
𝑂𝐶 = 676.5 𝐻𝑧 .This is a valid 

deduction from the analysis to say that the short-circuit and 

open-circuit resonance frequencies traced from the FRFs 

plot does not only depend on the load resistance, but also 

on the mechanical resonance frequency and mechanical 

damping of the piezoelectric cantilever beam.  

 

Frequency Response of the Current Output under 

Quasi-Steady Aerodynamic Airfoil Base Excitation 

 

In the simulations for current FRF given here, the 

current FRF is plotted against the frequency in Figure 7, 

Figure 8 and Figure 9. Unlike the voltage FRF (as shown in 

Figure 4, Figure 5 and Figure 6) the amplitude of the 

current at every frequency decreases with increasing load 

resistance. It can be seen that the current output trend is 

opposite of the voltage behavior shown in Figure 4, Figure 

5 and Figure 6. As the airfoil is excited at every excitation 

frequency, the maximum value of the current is obtained 

when the system is close to short-circuit conditions and 

minimum when it is at open-circuit. In the region of 

relatively low load resistance, the current output is larger at 

the short-circuit resonance frequency which is contrary to 

the case of the voltage output, where the voltage output 

assumed much lower values at the system short-circuit 

conditions. Also, the current output progressively decreases 

with increasing load resistance.  
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Figure 7: Steady state plunge current FRFs of the damped bimorph for a specific range 

                      of load resistance  

 

 
Figure 8: Steady state pitch current FRFs of the undamped bimorph for a specific range  

                      of load resistance  

 

http://www.imjst.org/


International Multilingual Journal of Science and Technology (IMJST) 

ISSN: 2528-9810 

Vol. 6 Issue 4, April - 2021 

www.imjst.org 

IMJSTP29120552 3475 

 
Figure 9: Steady state system current FRFs of the undamped bimorph for a specific                    

                      range of load resistance  

 

It is important to assess the current output 

contribution by plunge motion, and pitch motion to the 

current FRFs for aerodynamic excitation of the airfoil base 

structure under quasi-steady conditions. The maximum 

generated current output at each resonance frequency of the 

system for the three mode of vibration is tabulated in Table 

3.  

       Table 3: Maximum current FRFs output of the 

bimorph piezoelectric aeroelastic               

                           energy harvester at resonance 

frequencies of the first three modes 

Mod

e (𝒓) 

𝒇𝒓[𝑯𝒛
] 

Plunge 

Current

[𝒎𝑨] 

Pitch 

Current

[𝒎𝑨] 

System 

Current

[𝒎𝑨 

1 76.50 0.22 9.14 9.39 

2 302.00 2.19 52.25 53.74 

3 676.50 9.61 40.17 136.10 

 

Table 3 indicates that the pitch motion contributes 

more current than the plunge motion of the airfoil base 

structure. The results shows that the first mode does not 

produce maximum current due to interaction of the airfoil 

base aerodynamics with the structural dynamics of the 

piezoelectric cantilever beam, and this behavior is similar to 

the one obtained in the voltage FRFs. For the plunge 

motion, the third mode produces the highest current 

contribution (𝐼 = 9.61 𝑚𝐴)  while the first mode 

contributes the least (𝐼 = 0.22 𝑚𝐴). Considering the pitch 

motion, the second mode registered a high current FRF 

output of (𝐼 = 52.25 𝑚𝐴) and mode one contributed lowest 

current FRF value of 𝐼 = 9.14 𝑚𝐴. Therefore it is the third 

mode of the system’s current that produce the highest 

current FRF output under quasi-steady conditions with a 

value of  𝐼 = 136.10 𝑚𝐴. 

 

Frequency Response of the Power Output under Quasi-

Steady Aerodynamic Airfoil Base Excitation 

 

In the simulations for power FRF presented in 

Figure 10, Figure 11 and Figure 12, the amplitude of the 

power output at different frequencies increases and 

decreases with increasing load resistance. The power output 

plots intermingles at the first, second and third resonance 

frequencies. As the airfoil is excited at every excitation 

frequency, the maximum value of the power is obtained 

when the system is close to short-circuit conditions and 

minimum when it is at open-circuit. 

The maximum power output for the first vibration 

mode corresponds to the load of 33 𝑇Ω (see Figure 10) at 

76.5 𝐻𝑧. In the second vibration mode of the pitch motion 

(see Figure 11), it is observed that the maximum power 

output is obtained for 33 𝑇Ω at frequency 302.0 𝐻𝑧 , and 

the third mode a peak power at open-circuit load resistance 

of 3 𝑇Ω  and corresponding resonance frequency of 

676.0 𝐻𝑧 is achieved. The power FRFs given in Figure 12, 

that some of the power output plots, intersect one another 

along some of the load resistance curves. These 

intersections are observed around the resonance frequency 

of 76.5 𝑟𝑎𝑑/𝑠 , and off-resonance frequencies of 

194.5 𝑟𝑎𝑑/𝑠, 225 𝑟𝑎𝑑/𝑠, and 654 𝑟𝑎𝑑/𝑠, between curves 

of load resistances of 3 𝑇Ω and 333 𝑇Ω. The intersecting 

curves are also observed at the off-resonance frequencies 

between curves of 3 𝑇Ω  and 33 𝑇Ω , and of 0.33 𝑇Ω  and 

333 𝑇Ω . At these intersection frequencies, the two 
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respective load resistance values, yield the same power FRF 

output. 

 

 
Figure 10: Steady state plunge power FRFs of the damped bimorph for a specific range of  

                      load resistance  
 

 
 

Figure 11: Steady state pitch power FRFs of the damped bimorph for a specific range of  

                      load resistance 
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Figure 12: Steady state system power FRFs of the damped bimorph for a specific range of  

                      load resistance

It can be observed throughout the presentation of 

the power FRFs that the plunge motion contribution to the 

power FRFs output is basically higher than the pitch motion 

portion from aerodynamic excitation of the airfoil base 

structure under quasi-steady conditions. It can be seen in 

Table 4.14 that from the three mode of vibration, that 

maximum generated power output at each resonance 

frequency of the system is at the third mode of vibration. 

 

 

Table 4: Maximum power FRFs output of the bimorph 

piezoelectric aeroelastic energy  

                    harvester at resonance frequencies of the 

first three modes 
Mode 

(𝒓) 

𝒇𝒓[𝑯𝒛] Plunge 

Power[𝒎𝑾] 
Pitch 

Power[𝒎𝑾] 
System 

Power[𝒎𝑾] 
1 76.50 0.34 0.0063 0.35 

2 302.00 32.50 0.22 32.71 

3 676.50 12900 0.014 12900 

 

It can be observed in the plunge motion, the third 

mode produces the highest power contribution (𝑃 =
12900 𝑚𝑊)  while the first mode contributes the least 

(𝑃 = 0.34 𝑚𝑊). Similarly, for the pitch motion, mode two 

registered a high power FRF output of 𝑃 = 0.22 𝑚𝑊 and 

mode one contributed just small power FRF value of 

𝑃 = 0.0063 𝑚𝑊. It is the third mode of the system power 

output that produces the highest power FRF output under 

quasi-steady conditions with a value of  𝑃 = 12900 𝑚𝑊.  

 

 

 

V. CONCLUSION 

This research developed and modelled distributed-

parameter models of a piezo-aeroelastic energy harvester 

utilizing a dynamic airfoil wing as a base structure for an 

attached bimorph piezoelectric cantilevered beam. The 

source of ambient vibration is a wind induced dynamic 

flutter which was found to initiate at a low airflow speed of 

20 m/s and was considered suitable for deployment in both 

low and high wind speed environment. In adequately 

assessing the composite piezoelectric beam, the mode shape 

equation was solved as a damped and forced bimorph 

cantilevered beam to obtain a more structurally stable 

system. The dynamic airfoil base and the bimorph 

piezoelectric cantilever beam were aero-structurally and 

electromechanically coupled under three different models 

for electricity generation.  

In the analytical model, it was established from the 

results that the highest voltage, current and power 

generation occurs at ta load resistance of 𝑅𝑙 = 33 𝑇Ω , 

𝑅𝑙 = 0.3 𝑇Ω and 𝑅𝑙 = 3 𝑇Ω. The maximum generation was 

obtained at a load resistance of 33 𝑇Ω when system was 

excited at short-circuit and open-circuit resonance 

frequency of 76.5 Hz  (mode 1) and 676.5 Hz  (mode 3). 

The system generated a voltage output of 3212 𝑚𝑉 , a 

current of 9.39 𝑚𝐴, and 0.35 𝑚𝑊 for model one (mode 1), 

model two generated a voltage output of 19210 𝑚𝑉 , 

current output of 53.74 𝑚𝐴, and power output 32.71 𝑚𝑊 

(mode 2), and model three produced voltage output of 

12400 𝑚𝑉 , current of 136.10 𝑚𝐴 , and power output of 

12900 𝑚𝑊  (mode 3). Hence, piezo-aeroelastic energy 

harvester in model three gave a substantial improvement in 

power generation at low wind speed capable of supporting 
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many wireless sensor applications without need for 

incorporating energy storing device within the system. 
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