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Abstract— In this paper, applied residue-based 
seeded secant   method for computing 
eccentricity of normal ellipsoid is presented. A 
residue-based seeded secant algorithm is a form 
of secant algorithm that requires only one initial 
guess value from the user and then generates the 
second initial guess root from the single guess 
root. In this paper, a residue-based seeded secant 
algorithm was adapted for the computation of the 
eccentricity of the normal ellipsoid.  A set of 
normal ellipsoid constant data were used for a 
numerical example. The results showed that the 
residue-based seeded secant algorithm obtained 
the eccentricity in two iterations with error 

tolerance of the order of  𝒙 𝟏𝟎−𝟓. Essentially, the 
residue-based seeded secant method converges 
fast when applied to the computation of the 
eccentricity. 
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1.  INTRODUCTION  

 

Generally, numerical iteration methods are used to solve 

complex equations, especially those that do not have 

closed-form solutions [1,2,3,4,5,6,7,8]. Among the 

numerous iteration approaches, secant iteration approach 

has become one of the popular methods because of its fast 

converge and ease of implementation [9,10,11,12,13]. 

Unlike the Regular Falsi and bisection methods, the secant 

method does not require that the initial two guess roots 

should bracket the actual root [14,15,16,17,18]. As such, it 

is easier to select the two initial guess roots for the secant 

method. 

In addition, the secant method is similar to the popular 

Newton Raphson method. However, the secant method is 

preferred to the Newton Raphson method because the 

secant method does not require the computation of the first 

derivative of the function [19,20,21].   

Furthermore, in order to simplify the application of the 

secant method, a modified seeded version of the secant 

algorithm which requires only one initial guess root value 

has been developed. Particularly, in this paper, a residue-

based seeded secant   method for computing the eccentricity 

of normal ellipsoid is presented. Specifically, a single initial 

guess value of the square of the eccentricity (e2) of normal 

is presented and then used to compute the complementary 

value of the e2 . The difference between the initial guess 

value of e2 and the computed complementary value of e2 is 

the residue which is then used to modify the next guess root 

values that are employed in the secant algorithm to 

iteratively determine the actual value of e. The detailed 

mathematical analysis and algorithm of the iteration scheme 

are presented and implemented in Matlab software. 

 

2. METHODOLOGY 

2.1 Expression for Computing Eccentricity of Normal 

Ellipsoid 

 

The normal ellipsoid first eccentricity, e is given as [22]; 

 

e2   = 3J2 + 
ω 2(a 3) 

GM
[(

4

15
) (

e3

2q0
)]         

  (1)  

e′ =
e

√1−e2
   (2) 

𝑞0   =    
1

2
[(1 +

3

e′2) 𝑡𝑎𝑛−1(e′) − 
3

e′
]          (3)  

Where 

ω  is the angular velocity (  ω = 7.292115 x 10−5)  

a  is the equatorial earth radius (a = 6378137 km),  

J2 is the earth’s dynamic form factor 

(J2 = 1.08263 x 10−3)   
GM is the geocentric gravitational constant   (GM = 

3.986005 x 1014  m3/s2,  

The initial values of e2  denoted as e0
2  is given in [22] as ; 

e0
2    = 3J2 + 

ω 2(a 3) 

GM
            (4)  

The expression for  e2   in Eq 1 does not have a closed-form 

solution. Rather iterative solution approaches are used.  In 

this paper, residue-based seeded secant iteration is used. In 

this case, the residue or error, denoted as f(e0
2)  for e0

2  or 

f(e2)  for e2  is computed and used to determine when the 

solution with the desired error tolerance is achieved. 

Specifically, for e2 the residue, f(e2)  is given as; 

 

f(e2)   = e2 − {3J2 + 
ω 2(a 3) 

GM
[(

4

15
) (

e3

2q0
)]} (5)  
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2.2 The Residue-Based  Seeded Secant Algorithm For 

Computing Eccentricity of Normal Ellipsoid 

The Residue-Based Seeded Secant (RBSS) iteration 

uses a single initial value to carry out the iteration 

process. In the computation of  e2, the RBSS iteration 

starts with e0
2   as given in Eq 4. Then, the second 

initial value denoted as e1
2  is computed where ; 

e1
2  = e0

2 + f(e0
2) =

 e0
2 + [e0

2 − {3J2 + 
ω 2(a 3) 

GM
[(

4

15
) (

e0
3

2q0
)]}]   (6) 

Which gives; 

e1
2  = 2e0

2 − {3J2 + 
ω 2(a 3) 

GM
[(

4

15
) (

e0
3

2q0
)]}   (7) 

Where; 

e′ =
√e0

2

√1−e0
2
   (8) 

𝑞0   =    
1

2
[(1 +

3

e0
2) 𝑡𝑎𝑛−1 (√e0

2) − 
3

√e0
2
]    (9)  

Next, f(e1
2) is computed and the classical secant 

formula for computing the expected root, e2 from the 

two initial guess roots, e0
2 and e1

2 is applied to compute  

e2 where; 

e2   =  e1
2 − {f(e1

2) (
e1

2 −e0
2

f(e1
2) − f(e0

2)
)}   (10) 

The ,  f(e2) is computed and compare with the error 

tolerance, ε. If f(e2) < ε  then e2  is the solution 

otherwise, e0
2 = e2 and then e1

2 is recomputed in terms 

of e0
2 and also  e2 is recomputed in terms of e0

2 and  e1
2.  

The complete algorithm for the Residue-Based Seeded 

Secant (RBSS) iteration is presented as follows; 

 

Step 1.:  Input the values of the normal ellipsoid 

geocentric constants and computation error 

tolerance  

Step 1.1:  Input a = 6378137 km) 

Step 1.2:  GM= 3.986005 𝑥 1014  m3/s2, 

Step 1.3:  𝐽2 = 1.08263 𝑥 10−3  

Step 1.4:  𝜔 = 7.292115 𝑥 10−5. 

Step 1.5:  Error Tolerance, 𝜀 =   10−15  

Step 2.:  compute the initial value , e0
2  of the eccentricity of 

the normal ellipsoid 

e0
2  =

 3J2 + 
ω 2(a 3) 

GM

(1 +
ω 2(a 3) 

GM
(

9

14
))

 

Step 3.:  compute the error, f(e0
2) in the values of e0

2 where  

Step 3.1:  compute the second eccentricity, e0
′  in terms of 

e0
2 where  

e0
′ =

√e0
2 

√1−e0
2 

    

Step 3.1:  compute 𝑞0   in terms of e0
2 where;   

 

𝑞0   =    
1

2
[(1 +

3

e0
′2) 𝑡𝑎𝑛−1(e0

′ ) − 
3

e0
′

] 

 

Step 3.2:  compute the error, f (e0
2)  in the values of 

e0
2 where  

f(e0
2)   = e0

2  − {3J2 + 
ω 2(a 3) 

GM
[(

4

15
) (

e0
3

2q0
)]} 

 

Step 4.:  compute the next value , e1
2  of the eccentricity of 

the normal ellipsoid, where  

e1
2      = e0

2 + f(e0
2) 

Step 5.:  compute the error, f(e1
2) in the values of e1

2 where  

Step 5.1:  compute the second eccentricity, e1
′  in terms of 

e1
2 where  

e1
′ =

√e1
2 

√1 − e1
2 

 

 

Step 5.1:  compute 𝑞0   in terms of e1
2 where;   

 

𝑞0   =    
1

2
[(1 +

3

e1
′2) 𝑡𝑎𝑛−1(e1

′ ) − 
3

e1
′
] 

 

Step 5.2:  compute the error, f (e1
2)  in the values of 

e0
2 where  

f(e1
2)   = e1

2  − {3J2 + 
ω 2(a 3) 

GM
[(

4

15
) (

e1
3

2q0
)]} 

Step 6.:  compute the expected  value , e2  of the 

eccentricity of the normal ellipsoid, where  

e2   =  e1
2 − {f(e1

2) (
e1

2  − e0
2

f(e1
2)  −  f(e0

2)
)} 

Step 7.:  compute the error, f(e2) in the values of e2 where  

Step 7.1:  compute the second eccentricity, e′ in terms of 

𝐞′𝟐 where  

e′ =
√e2 

√1 − e2 
 

 

Step 7.1:  compute 𝑞0   in terms of e2 where;   

 

𝑞0   =    
1

2
[(1 +

3

𝐞′𝟐
) 𝑡𝑎𝑛−1(e′) − 

3

e′
] 

 

Step 7.2:  compute the error, f (e2)  in the values of 

e2 where  

f(e2)   = e2  − {3J2 + 
ω 2(a 3) 

GM
[(

4

15
) (

e3

2q0
)]} 

Step 8.:  Check the tolerance error 

Step 8.1:    If f(e2)  > 𝜀 Then  

Step 8.2:     e0
2  = e2  

Step 8.3:   GOTO Step 3 
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Step 8.4:   ELSE 

Step 8.5:   Print “Square of First eccentricity is e2 

=”, √e2 

Step 8.6:   Print “First eccentricity is e =’, √e2 

Step 8.7:   Print “Second eccentricity is e′ =”, e′ 

Step 8.6:   EndIf 

  

Step 9.:  Stop  

 

3  RESULTS AND DISCUSSION 

 A numerical example was conducted using the data values 

provided in the algorithm. The initial value of the 

eccentricity and other parameters were obtained and given 

as follows; 

i) e0
2 =0.006709281393112260 

ii) e′ = 0.082186372985854000 
iii) 𝑞0 = 0.000073592001058387 
iv) f(e0

2) =-1.49345515727860 𝑥 10−5 

 

Then, the second initial value,  e1
2 is obtained as e1

2 = e0
2 +

f(e0
2) . The RBSS algorithm used the values of e0

2 and e1
2 

iteratively to determine the value of e2 with error tolerance, 

𝜀 =   10−15. The results are shown in Table 1. The results 

show that the initial of e0
2 gave error tolerance, ε =   10−5  

but after two iterations the Residue-Based Seeded Secant 

(RBSS) algorithm gave e2 = 0.006694380023 with error 

tolerance, ε = −7.701305E − 15. 
 

Table 1  The results of the Residue-Based Seeded Secant (RBSS) iteration for computing the first eccentricity of normal 

ellipsoid 

 

Cycle e0
2 f(e0

2) e1
2 f(   e1

2) e2 f(e2) 

0 0.006709281393 -1.493455E-05 0.006694346842 3.325510E-08 0.006694380023 3.476559E-14 

1 0.006694380023 3.476559E-14 0.006694380023 1.937877E-13 0.006694380023 2.034354E-13 

2 0.006694380023 2.034354E-13 0.006694380023 -9.835882E-15 0.006694380023 -7.701305E-15 

3 0.006694380023 -7.701305E-15 0.006694380023 -5.946632E-15 0.006694380023 0.000000E+00 

4 0.006694380023 0.000000E+00 0.006694380023 0.000000E+00     

 

4. Conclusion  

A Residue-Based Seeded Secant (RBSS) algorithm was 

presented for computing the eccentricity of normal 

ellipsoid. A same normal ellipsoid constants dataset were 

used to demonstrate the application of the RBSS algorithm. 

The results showed that the RBSS algorithm obtained the 

eccentricity in two iterations with error tolerance of the 

order of  𝑥 10−5. 
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