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Abstract— In this paper, development of single to dual 

initial root values mechanism suitable for Bisection and 

Regular Falsi iteration methods is presented. Generally 

, to find the root of function, f(x) using  the Bisection 

and Regular Falsi iteration methods, two initial guess 

root values  ( 𝐗𝐋 and 𝐗𝐔   ) are required such that 

f(𝐗𝐋 )*f(𝐗𝐔 ) < 0. As such, users of such method will 

continue to try two different sets of initial values until 

the required condition is met before they can proceed 

to use the Bisection or Regular Falsi iteration method to 

find the root of the function. In this paper, a procedure 

that can enable the user to provide only one initial 

guess root value and then the procedure will generate 

the required two initial root values that satisfy the 

Bisection or Regular Falsi iteration method is 

presented. The relevant mathematical expressions, 

algorithm and flowchart are presented along with 

numerical examples based on three different functions. 

The results show that for the different functions 

considered in the study, different arbitrary initial guess 

root values were selected and the procedure presented 

in this paper was able to generate the initial two root 

values that are suitable for Bisection and Regular Falsi 

iteration methods for finding the root of the functions. 

The results for the initial values for the first function, 

𝐟(𝐱)   =  𝐱𝟑.𝟓 − 𝟖𝟎 = 𝟎  simulated with a single initial 

guess root value (𝐗𝟎=2.7978856000) which is about 80% 

of the actual root (X = 3.4973572432) shows that it took 

two iterations to arrive at the two initial root values 

(𝐗𝐋 = 𝟐. 𝟕𝟗𝟕𝟖𝟖𝟓𝟔𝟎𝟎𝟎  and 𝐗𝐔=3.7348194090 ) such that 

f( 𝐗𝐋 )*f( 𝐗𝐔 ) < 0 as required by the Regular Falsi or 

Bisection iteration method. Again, initial values for 

three different  functions were  simulated with a single 

initial guess root value that is about 80%, 40% and 20% 

of the actual root  of the functions  the results showed 

that for the different functions considered in the study 

and for the different arbitrary initial guess root values 

selected, the procedure presented in this paper was 

able to generate the initial two root values that are 

suitable for Bisection and Regular Falsi iteration 

methods for finding the root of the functions. 
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I. INTRODUCTION 

Bisection and Regular Falsi methods are among the two 

most popular bracketing numerical iteration methods for 

finding the root of function, f(x). Usually, the bracketing 

iteration methods require two initial guess root values, 

𝑥𝐿 and 𝑥𝑈  , such that  𝑓(𝑥𝐿) ∗  𝑓(𝑥𝑈) < 0 

[1,2,3,4,5,6,7,8,9,10]. In essence,  the two initial roots must 

bracket one of the roots (x) of the function, such that 𝑥𝐿 ≤ x 

≤ 𝑥𝑈.  

In practice, users of the Bisection and Regular Falsi 

methods are required to provide the two initial guess root 

values before the Bisection or Regular Falsi iteration can 

start [11,12,13,14,15]. However, in this paper, a method  

that enable the user to provide only one initial guess root 

value and then an algorithm developed in this paper will be 

used to generate the required two initial root values that 

satisfy the Bisection or Regular Falsi iteration method is 

presented. The mathematical expressions associated with 

the method are presented along with numerical examples 

based on three different functions. Matlab software was 

used to perform the simulation computations. 

 

II. METHODOLOGY 

Regular Falsi or Bisection iteration methods require that 

given two initial roots , 𝑥𝐿 and 𝑥𝑈  , then the condition 

𝑓(𝑥𝐿) ∗  𝑓(𝑥𝑈) < 0  must be met before the iteration can 

proceed [16,17,18,19,20,21,22,23,24,25].  In this paper, the 

focus is on the use of single initial guess root value, 𝑥0 to 

analytically and automatically determine the two initial 

roots 𝑥𝐿 and 𝑥𝑈  ,  which are suitable for Regular Falsi or 

Bisection iteration methods.  Now, let the function, f(x)  be 

such that; 

f(x) = 0   (1) 

Also, when a single initial guess root value, 𝑥0 is provided, 

then, the second initial guess root value,  𝑥1   can be 

calculated as; 

𝑥1  = 1 +  
 (𝑥0)f(𝑥0)

f(𝑥0)−1
  (2) 

In some cases, 𝑓(𝑥0) ∗  𝑓(𝑥1) > 0 , as such , the two initial 

roots,  𝑥0 and 𝑥1 are not suitable for Regular Falsi or 

Bisection iteration method. However, from the available 

initial guess roots,  𝑥0 and 𝑥1  the suitable root values , 
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𝑥𝐿 and 𝑥𝑈 can be determined  such that 𝑓(𝑥𝐿) ∗  𝑓(𝑥𝑈) < 0. 

The analytical expression  used  to realize 𝑥𝐿 and 𝑥𝑈  is 

given as; 

 𝑥𝑘  = 1 + (
(K)f(𝑥𝑘−1)

f(𝑥𝑘−1)−1
) (𝑥𝑘−1)  (3) 

Where k is incremented at each iteration until xk−1  and xK   

is reached at which f(xK−1 ) ∗  f(xK ) < 0.  The flowchart 

for single guess root value to dual initial root values 

mechanism suitable for Bisection and Regular Falsi  

iteration methods is given in Figure 1. The algorithm is 

summarized as follows; 

Step 1: Choose a single initial value, 𝑥0    

Step 2: Compute    k =1 

Step 3: Compute    𝑥𝑘  = 1 +  (
(K)f(𝑥𝑘−1)

f(𝑥𝑘−1)−1
) (𝑥𝑘−1)  

Step 4:    If f(𝑥𝑘−1) ∗ f(𝑥𝑘) <  0  Then   

Step 4.1:    Goto Step 5  

Step 4.2: Else 

Step 4.2.1:    k  = k +1  

Step 4.2.2:    𝑥𝑘−1 =  𝑥𝑘     

Step 4.2.3:     Goto Step 3 

Step 4.3:    Endif 

Step 5:  Return The Initial Roots  

Step 5.1:    𝑥𝐿  = 𝑥𝑘−1 

Step 5.2:    𝑥𝑈  = 𝑥𝑘 

Step 5.3:    Return The Initial Roots  𝑥𝐿 and  𝑥𝑈  
// run the normal Bisection and Regular Falsi  

iteration method with the two initial values,  

𝑥𝐿 and  𝑥𝑈  
Step 5.4:    End 

 
Figure 1: The flowchart for single to dual initial root 

values mechanism suitable for Bisection and Regular 

Falsi  iteration methods  

 

IV. NUMERICAL EXAMPLES, RESULTS AND 

DISCUSSIONS 

 

The single guess root value to dual initial root values 

mechanism suitable for Bisection and Regular Falsi  

iteration methods is demonstrated using the following 

functions; 

1) 𝐟(𝐱)   =  𝐱𝟑.𝟓 − 𝟖𝟎 = 𝟎 

2) 𝐟(𝐱)   = 𝐜𝐨𝐬(𝐱) − 𝐱𝐞𝐱  = 𝟎 

3) 𝐟(𝐱)   = 𝐱𝟐 −  𝐬𝐢𝐧(𝐱) − 𝟎. 𝟓 = 𝟎 

  
Compute   k =1 

Compute  𝑥𝑘  = 1 +  (
(K)f(𝑥𝑘−1)

f(𝑥𝑘−1)−1
) (𝑥𝑘−1)   

f(𝑥𝑘−1) ∗ f(𝑥𝑘  ) <  0 

YE

S 
NO 

Compute   k  = k +1  

Compute  𝑥𝑘−1 =  𝑥𝑘         

𝑥𝐿  = 𝑥𝑘−1 

𝑥𝑈  = 𝑥𝑘 

  𝑥0 and 𝑥𝑈  are the two initial 

values to run the Bisection 

Iteration 

Start 

Exit 

Input  𝐱𝟎  
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The two initial root values mechanism was implemented in 

Matlab software.  For each of the listed functions, a single 

guess root value was provided and the effective initial root 

values, 𝑥𝐿 and  𝑥𝑈  suitable for Bisection and Regular Falsi 

iteration methods were determined using the mechanism 

presented in this paper. The process was repeated for 

different initial single guess root values.  

The results for the initial values for the first function, 

f(x)   =  x3.5 − 80 = 0  simulated with a single initial 

guess root value (𝑋0=2.7978856000)  which is about 80% 

of the actual root (X = 3.4973572432) is shown in Table 1.  

The results show that it took 2 iterations to arrive at the 2 

initial root values ( 𝑋𝐿 = 𝟐. 𝟕𝟗𝟕𝟖𝟖𝟓𝟔𝟎𝟎𝟎  and 

𝑋𝑈=3.7348194090 ) such that f(XL)*f(XU) < 0 as required 

by the Regular Falsi or Bisection iteration method.  

Again the results for the initial values for the first function, 

f(x)   =  x3.5 − 80 = 0  simulated with a single initial 

guess root value which is about 40% of the actual root is 

shown in Table2 while that with a single initial guess root 

value that is about 20% of the actual root is shown in Table 

3. 

 

Table 1      The results for the initial values for the first function , f(x)   =  x3.5 − 80 = 0  simulated with a single initial guess 

root  value that is about 80% of the actual root 

k   𝑥𝑘 f(𝑥𝑘) f(𝑥𝑘−1)* f(𝑥𝑘) 

  

Actual Root ,X = 3.4973572432 

0 f(𝑥0)=f(x) 2.7978857946 -43.3642622559   𝑋0=2.7978856000 𝑋1=3.7348194090 

0 f(𝑥1)= = f(x+δ) 3.7348195865 20.6801136174 -896.7778703869 (Xo/X)100% 80.% 

1 f(𝑥2)== f(1-(Δ*x)) 8.3012685342 1568.1837202834 32430.2175084084 𝑋𝐿=2.7978856000 𝑋𝑈=3.7348194090 

2 f(𝑥3)== f(1-(2*Δ)*x) 25.3424572485 81855.2020236826 128363995.2340510000 f(𝑋𝐿)*f(𝑋𝑈) =-896.7778703869 

 

Table 2        The results for the initial values for the first function , f(x)   =  x3.5 − 80 = 0  simulated with a single initial 

guess root  value that is about 40% of the actual root 

k 

 

𝑥𝑘 f(𝑥𝑘) f(𝑥𝑘−1)* f(𝑥𝑘) Actual Root ,X = 3.4973572432 

0 f(𝑥0)=f(x) 1.3989428973 -76.7618276759   𝑋0=1.3989428973 𝑋1=2.3809527993 

0 f(𝑥1)=  f(x+δ) 2.3809527993 -59.1729504293 4542.223823932 (Xo/x)100% 40.00 

1 f(𝑥2)= f(1-(Δ*x)) 5.7006685400 362.3237565874 -21439.765687911 𝑋𝐿=2.3809527993 𝑋𝑈=5.7006685400 

2 

f(𝑥3)= f(1-

(2*Δ)*x) 
17.8820775895 24100.3683437856 8732135.99345926 

f(𝑋𝐿)*f(𝑋𝑈)  = -21439.7656879110 

 

 

Table 3   The results for the initial values for the first function , f(x)   =  x3.5 − 80 = 0  simulated with a single initial guess 

root  value that is about 20% of the actual   

j   xJ f(xj) f(xj-1)*f(xj) XL Actual Root ,X =  3.4973572432 

0 f(xo)=f(x) 0.6994714486 -79.7137832989 1.0000000000 𝑋0=0.6994714486 𝑋1=1.6908053767 

1 f(x1) = f(x+δ) 1.6908053767 -73.7146759877 5876.0757076318 (Xo/x)100% 20.00 

2 f(x2) = f(1-(Δ*x)) 4.3397144303 90.2605503147 -6653.5272209208 1.6908053767 𝑋𝑈=4.3397144303 

3 f(x3) = f(1-(2*Δ)*x) 13.8578431664 9826.8308280915 886975.1583929230 f(𝑋𝐿)*f(𝑋𝑈)  = -6653.5272209208 

 

The results for the initial values for the second function, 

f(x)   = cos(x) − xex  = 0  simulated with a single initial 

guess root value (𝑋0=0.4142056000) that is about 80% of 

the actual root (X = 0.5177573637) is shown in Table 4.  It 

took 2 iterations to arrive at the 2 initial root values 

( 𝑋𝐿 =0.4142056000  and 𝑋𝑈 =0.8319052806) such that 

f( XL )*f( XU ) < 0 as required by the Regular Falsi or 

Bisection iteration method. Again the results for the initial 

values for the second function, f(x)   = cos(x) − xex  = 0  

simulated with a single initial guess root value that is about 

40% of the actual root is shown in Table 5 while that with a 

single initial guess root value that is about 20% of the 

actual root is shown in Table 6.  
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Table 4    The results for the initial values for the first function , f(x)   = cos(x) − xex  = 0  simulated 

with a single initial guess root  value that is about 80% of the actual root 

k   𝑥𝑘  f(𝑥𝑘) f(𝑥𝑘−1)* f(𝑥𝑘) 

  

Actual Root ,X = 0.5177573637 

0 f(𝑥0)=f(x) 0.4142056000 0.2886735827   𝑋0=0.4142056000 𝑋1=0.8319052806 

0 f(𝑥1)=  f(x+δ) 0.8319052806 -1.2379938055 -0.3573761072 (Xo/x)100% 80.00 

1 f(𝑥2)= f(1-(Δ*x)) 0.3247851565 0.4983032606 -0.6168963499 𝑋𝐿=0.4142056000 𝑋𝑈=0.8319052806 

2 f(𝑥3)= f(1-(2*Δ)*x) 0.6045828226 -0.2839425497 -0.1414894983 f(𝑋𝐿)*f(𝑋𝑈) -0.3573761072 

 

Table 5   The results for the initial values for the first function , f(x)   = cos(x) − xex  = 0  simulated 

with a single initial guess root  value that is about 40% of the actual  

k   xJ f(xj) f(xj-1)*f(xj) Actual Root ,X = 0.5177573637 

0 f(xo)=f(x) 0.2071028000 0.7238717368 1.0000000000 𝑋0=0.2071028000 𝑋1=0.4570788887 

0 f(x1) = f(x+δ) 0.4570788887 0.1754106529 0.1269748140 (Xo/x)100% 40.00 

1 f(x2) = f(1-(Δ*x)) -1.3964695620 0.5190282082 0.0910430769 𝑋𝐿=-1.3964695620 𝑋𝑈=11.9825575486 

2 f(x3) = f(1-(2*Δ)*x) 11.9825575486 -1916496.1749836200 -994715.5757877420 f(𝑋𝐿)*f(𝑋𝑈) -994715.5757877420 

 
In the case of Table 6, the initial guess root , 

X0=0.1035514000  is 20% of the actual Root ,X = 

0.5177573637. However, after the second 

iteration, the generated 2 initial root values (XL = 

0.2421004890   and XU = -2.5438988221) 

bracketed another root of the function which in 

this case is X =  -1.8639951924. At this point, the 

initial guess root , X0=0.1035514000  is -5.56% of 

the actual root that is enclosed by XL and XU. 

The results for the initial values for the third 

function,f(x)   = x2 −  sin(x) − 0.5   simulated with a 

single initial guess root value 𝑋0=0.9568656266 that is about 

80% of the actual root (X = 0.5177573637) is shown in Table 7.  

It took 2 iterations to arrive at the 2 initial root values 

(𝑋𝐿=0.9568656266 and 𝑋1=1.2742668767) such that f(XL)*f(XU) < 

0 as required by the Regular Falsi or Bisection  iteration 

method.  

Again the results for the initial values for the third 

function,f(x)   = x2 −  sin(x) − 0.5  simulated with a 

single initial guess root value that is about 40% of the 

actual root is shown in Table 8 while that with a single 

initial guess root value that is about 20% of the actual root 

is shown in Table 9.  

 

 

Table 6  The results for the initial values for the first function , f(x)   = cos(x) − xex  = 0  

simulated with a single initial guess root  value that is about 20% of the actual     

k   𝑥𝑘 f(𝑥𝑘) f(𝑥𝑘−1)* f(𝑥𝑘) Actual Root ,X =  -1.8639951924 

0 f(xo)=f(x) 0.1035514000 0.8797941953 1.0000000000 𝑋0=0.1035514000 𝑋1=0.6624193527 

0 f(x1) = f(x+δ) 0.2421004890 0.6624193527 0.5827927013 (Xo/x)100% -5.56 

1 f(x2) = f(1-(Δ*x)) -2.5438988221 -0.6267881287 -0.4151965865 𝑋𝐿 = 0.2421004890 𝑋𝑈= -2.5438988221 

2 f(x3) = f(1-(2*Δ)*x) 56.8568886527 -28016642627163800   17560499005495100  f(𝑋𝐿)*f(𝑋𝑈) -0.4151965865 

Table 7    The results for the initial values for the first function , f(x)   = x2 −  sin(x) − 0.5   simulated 

with a single initial guess root  value that is about 80% of the actual root    

k   𝑥𝑘  f(𝑥𝑘) f(𝑥𝑘−1)* f(𝑥𝑘) 

  

Actual Root ,X = 0.5177573637 

0 f(xo)=f(x) 0.9568656266 -0.4017980940 1.0000000000 𝑋0=0.9568656266 𝑋1=1.2742668767 

1 f(x1) = f(x+δ) 1.2742668767 0.1673997218 -0.0672608892 (Xo/x)100% 80.00 

2 f(x2) = f(1-(Δ*x)) 1.5485337534 0.8982045864 0.1503591979 𝑋𝐿=0.9568656266 𝑋𝑈=1.2742668767 

3 f(x3) = f(1-(2*Δ)*x) 1.8228006302 1.8541875340 1.6654397470 f(𝑋𝐿)*f(𝑋𝑈) -0.0672608892 
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Table 8  The results for the initial values for the first function , f(x)   = x2 −  sin(x) −

0.5   simulated with a single initial guess root  value that is about 40% of the actual root       

k   𝑥𝑘 f(𝑥𝑘) f(𝑥𝑘−1)* f(𝑥𝑘) 

  

Actual Root ,X =  1.1960820333 

0 f(xo)=f(x) 0.4784328133 -0.7314905655 1.0000000000 𝑋0=0.4784328133 𝑋1=1.2021201248 

0 f(x1) = f(x+δ) 1.2021201248 0.0122875601 -0.0089882343 (Xo/x)100% 40.00 

1 f(x2) = f(1-(Δ*x)) 1.4042402496 0.4857291067 0.0059684256 𝑋𝐿=0.4784328133 𝑋𝑈=1.2021201248 

2 f(x3) = f(1-(2*Δ)*x) 1.6063603744 1.0810259865 0.5250857867 f(𝑋𝐿)*f(𝑋𝑈) -0.0089882343 

 

Table 9 The results for the initial values for the first function , f(x)   = x2 −  sin(x) − 0.5   simulated 

with a single initial guess root  value that is about 20% of the actual root            

kj   𝑥𝑘  f(𝑥𝑘) f(𝑥𝑘−1)* f(𝑥𝑘) Actual Root ,X =  1.1960808193 

0 f(xo)=f(x) 0.2392164067 -0.6797169303 1.0000000000 𝑋0=0.2392164067 𝑋1=1.0968016924 

0 f(x1) = f(x+δ) 1.0968016924 -0.1867781120 0.1269562449 (Xo/x)100% 20 

1 f(x2) = f(1-(Δ*x)) 1.1936033848 -0.0050131305 0.0009363431 𝑋𝐿 = 1.1936033848 𝑋𝑈=1.2904050772 

2 

f(x3) = f(1-

(2*Δ)*x) 
1.2904050772 0.2041980226 -0.0010236713 

f(𝑋𝐿)*f(𝑋𝑈) -0.0010236713 

 

V  CONCLUSION 

A procedure to use one initial guess root value for 

a function to generate two initial root values that 

are suitable for Bisection and Regular Falsi 

iteration methods is presented. The relevant 

mathematical expressions, algorithm and 

flowchart are presented along with numerical 

examples based on three different functions. The 

results show that for the different functions 

considered in the study, different arbitrary initial 

guess root values were selected and the procedure 

presented in this paper was able to generate the 

initial two root values that are suitable for 

Bisection and Regular Falsi iteration methods for 

finding the root of the functions. 
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