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Abstract— A non-iterative solution for the first 

eccentricity (e) of the normal ellipsoid is presented. The 

solution is based on a series approximation of 𝐭𝐚𝐧−𝟏(𝐱) 

which yielded a series approximation of the first 

eccentricity, e. The first five terms of the series was 

then considered in the non-iterative solution approach 

and numerical example was used to demonstrate the 

application of the solution approach. At the same time, 

a bisection iteration approach was also used to 

determine the value of the first eccentricity, e and the 

result was compared with that obtained from the non-

iterative solution approach. The results show that it 

took about 10 iterations for the bisection method to 

arrive at the solution based on the initial value, 𝐞𝟎
𝟐 =

 0.006709281393112260. The error between the initial 

value 𝐞𝟎
𝟐 = 0.006709281393112260 and the actual value 

of 𝐞𝟐 = 0.006694387918274080 was 

1.489347483820000000  𝐱 𝟏𝟎−𝟓 . On the other hand, the 

non-iterative solution approach presented in this paper 

does not require any iteration to obtain the value of first 

eccentricity (e) with  the desired tolerance error,  𝛆 in 

the order of   𝟏𝟎−𝟗. 
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I.  INTRODUCTION 

 

In the geodetic reference system, the earth is modeled as 

geocentric equipontential ellipsoid of revolution (or normal 

ellipsoid) [1,2,3,4,5,6] characterized by the following basic 

or primary constants; equatorial earth radius (a = 6378137 

km), the geocentric gravitational constant for both the earth 

and the atmosphere (GM = 3.986005 x 1014   m3/s2 , the 

earth’s dynamic form factor ( J2 = 1.08263 x 10−3)  and 

angular velocity ( ω = 7.292115 x 10−5 . In addition to 

these basic constants, the square of the first eccentricity is a 

fundamental [6,7,8,9,10,11,12] parameter which is derived 

from the four listed basic constants.  

 

Notably, the first eccentricity is essential for the 

determination of some other derived parameters of the 

geocentric equipontential ellipsoid [5,13,14]. However, the 

square of the first eccentricity (e2) is related to the basic 

constants via a transcendental equation which requires 

iterative method for its solution. However, in this paper, a 

non-iterative solution is derived for computing the first 

eccentricity of the normal ellipsoid. The approach in this 

paper utilized a series expansion of key component of the 

transcendental equation relating the first eccentricity to the 

basic or primary constants. The details of the derivation of 

the non-iterative solution are presented along with 

numerical example and estimation error performance 

analysis. 

 

II.  METHODOLOGY 

 

A.  Analytical Expression for First Eccentricity of Normal 

Ellipsoid 

 

The first eccentricity, e of the   normal ellipsoid is defined 

in terms of certain constants among which are the 

equatorial earth radius (a = 6378137 km), the geocentric 

gravitational constant for both the earth and the atmosphere 

(GM = 3.986005 x 1014  m3/s2, the earth’s dynamic form 

factor ( J2 = 1.08263 x 10−3)  and angular velocity (  

ω = 7.292115 x 10−5 . The eccentricity, e is defined as 

follows [5]; 

 

e2   = 3J2 + 
ω 2(a 3) 

GM
[(

4

15
) (

e3

2q0
)]                 (1)  

𝑞0   =    
1

2
[(1 +

3

e′2) 𝑡𝑎𝑛−1(e′) − 
3

e′
]        (2)  

 

e′ =
e

√1−e2
   (3) 

 

B.  Non-Iterative Solution to the Analytical Expression for 

First Eccentricity of Normal Ellipsoid 

In a bid to provide initial value for an  iterative solution to 

e, the author in [5] used a series expansion of tan−1(x) to 

provide an approximation of e as follows; 

 

tan−1(x) = x −
1

3
x3 +

1

5
x5 −

1

7
x7 + ⋯ , for |x| < 1  (4) 

Hence,  
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𝑞0 =
1

2
[(1 +

3

e′2) {e′ −
1

3
e′3 +

1

5
e′5 −

1

7
e′7 + ⋯ } − 

3

e′
] ,

for |x| < 1  (5) 

Further expansion and simplifications were performed in 

[5] led to the following expression; 

(
4

15
) (

e3

2q0
) = 1 −

9

14
e2 −

13

392
e4 −

4189

181104
e6 +

1720993

3380608
e8  + ⋯ (6) 

Accordingly, [5] approximated (
4

15
) (

e3

2q0
) = 1  thereby 

making the initial value, e0
2  of e2   in Eq 1 as; 

e0
2    = 3J2 + 

ω 2(a 3) 

GM
            (7)  

The approach in this paper utilizes the first 5 terms (in Eq 

6) of the series for (
4

15
) (

e3

2q0
). First, the first two terms in 

Eq 6 were used to determine e0
2 and them, the 3rd, 4th and 5th 

terms were further computed using e0
2  to obtain the 

effective value, e0e
2  of e2  which is more accurate and may 

not require further iteration for acceptable level of 

accuracy. In this case, (
4

15
) (

e3

2q0
) is  first approximated to 

 1 −
9

14
e2 which gives;  

e0
2    = 3J2 + 

ω 2(a 3) 

GM
(1 −

9

14
e0

2   ) = 3J2 + 
ω 2(a 3) 

GM
−

 
ω 2(a 3) 

GM
(

9

14
e0

2   )         (8)  

Hence,  

e0
2  =

 3J2+ 
ω 2(a 3) 

GM

(1+
ω 2(a 3) 

GM
(

9

14
))

    (9) 

Recall that the first 5 terms in the series approximation of 

(
4

15
) (

e3

2q0
)  includes 1 −

9

14
e2 −

13

392
e4 −

4189

181104
e6 +

1720993

3380608
e8 . In that case, when all the five terms are 

considered, e0
2   becomes; 

e0
2    =

3J2 + 
ω 2(a 3) 

GM
− 

ω 2(a 3) 

GM
(

9

14
e0

2   ) − (
ω 2(a 3) 

GM
) (

13

392
e4) −

(
ω 2(a 3) 

GM
) (

4189

181104
e6) + (

ω 2(a 3) 

GM
) (

1720993

3380608
e8)            (10) 

Since the first two terms 1 −
9

14
e2 had been used in the 

determination of e0
2   =

 3J2+ 
ω 2(a 3) 

GM

(1+
ω 2(a 3) 

GM
(

9

14
))

  , then, in terms of 

the remaining three terms, e0
2  can be approximated as;  

e0e
2    =

 3J2+ 
ω 2(a 3) 

GM

(1+
ω 2(a 3) 

GM
(

9

14
))

 −  (
ω 2(a 3) 

GM
) (

13

392
((e0
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(
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) (
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(11) 

e2 = e0e
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e0
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ω 2(a 3) 

GM
) (

13

392
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2)2)) − (
ω 2(a 3) 
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181104
(e0

2)3) +

(
ω 2(a 3) 
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) (

1720993

3380608
(e0

2)4)            (12) 

 

III. SIMULATION AND DISCUSSION OF RESULTS 

The value of e2 was iteratively computed using the initial 

value set by [5] Next, the value of e2  was computed using 

the expression in Eq 11 (or Eq 12) derived in this paper. 

The results were compared. The input data for the 

simulation and computations are as follows; 

i) a = 6378137 km) 

ii) GM= 3.986005 𝑥 1014  m3/s2, 

iii) 𝐽2 = 1.08263 𝑥 10−3  

iv) 𝜔 = 7.292115 𝑥 10−5. 

v) Tolerance, 𝜀 =   10−9  

The iteration conducted in respect of f(e2) is such that the 

iteration started with the initial value, e0
2    set by [5] where  

e0
2    = 3J2 + 

ω 2(a 3) 

GM
 . Hence; 

f(e2)   = e2  − {3J2 + 
ω 2(a 3) 

GM
[(

4

15
) (

e3

2q0
)]}  (13)  

where 𝑞0   is given in Eq 2 and e′ is given in Eq 3 

 

Table 1  The results of the computation  of e2 using iterative approach based on the initial value defined by [5] and 

computation with the non-iterative approach presented in this paper 

Parameter 
Description 

Result of iterative approach based 

on the initial value defined by [5] 
Parameter 
Description 

Result of the non-iterative 

approach presented in this paper 

e0e
2 =   e0

2 0.006709281393112260 e0e
2  0.006694390344701410 

e0 0.081910203229587100 e0 0.08181925411968390 

e′0 0.082186372985854000 e′0 0.08209450186751850 

e2 0.006694387918274080 e2 0.006694387918274080 

e2 − e0
2 -1.489347483820000000𝑥 10−5 e2 − e0e

2  -2.426427330760870000𝑥 10−9 
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Table 2  The results of the computation  of e2 using Bisection iterative approach based on the initial value defined by [5] 

Cycle eL
2 eu

2  f(eL
2)   (error based on eL

2) 

1 e0
2 = 0.006709281393112260 0.006627287209056940 -1.4934551572786000000E-05 

2 0.006709281393112260 0.006668284301084600 -1.4934551572786000000E-05 

3 0.006709281393112260 0.006688782847098430 -1.4934551572786000000E-05 

4 0.006699032120105340 0.006688782847098430 -4.6624562726601700000E-06 

5 0.006699032120105340 0.006693907483601880 -4.6624562726601700000E-06 

6 0.006696469801853610 0.006693907483601880 -2.0944324500291400000E-06 

7 0.006695188642727750 0.006693907483601880 -8.1042057826184700000E-07 

8 0.006694548063164820 0.006693907483601880 -1.6841458581884300000E-07 

9 0.006694548063164820 0.006694227773383350 -1.6841458581884300000E-07 

10 0.006694387918274080 0.006694227773383350 -7.9128312175172400000E-09 

11 e2 = 0.006694387918274080 0.006694307845828720 -7.9128312175172400000E-09 

 

The results of the computation of e2  using the iterative 

approach based on the initial value defined by [5] and 

computation with the non-iterative approach presented in 

this paper are presented in Table 1. The solution value of e 

obtained with the non-iterative approach has tolerance 

error,  𝜀 of  10−9. The results of the iterative approach show 

that it took about 10 iterations for the bisection method to 

arrive at the solution based on the initial value , e0
2 =

 0.006709281393112260  computed according to the 

formula presented in [5]. The error between the initial value  

e0
2 = 0.006709281393112260 used in the iterative approach 

and the actual value of e2 = 0.006694387918274080 is 

1.489347483820000000 𝑥 10−5. 

 

Notably, the approach presented in this paper does not 

require any iteration to achieve the desired tolerance error,  

𝜀 in the order of   10−9. However, it took about 10 iterations 

for the Bisection method to arrive at the solution with 

tolerance error of the order of  10−9. 

 

IV. CONCLUSION 

 

A non-iterative solution for computing the first eccentricity, 

e of normal ellipsoid is presented. The solution is achieved 

by considering a series expansion of tan−1(x)  which is 

used to derive a series approximation solution to the first 

eccentricity. A sample numerical computation showed that 

the derived non-iterative solution approach was able to 

determine the value of the first eccentricity, e of normal 

ellipsoid with tolerance error of the order of   10−9 . 

Meanwhile, it took about 10 iterations for Bisection 

iterative approach to arrive at the solution with tolerance 

error of the order of   10−9 . As such, the non-iterative 

solution is reasonably effective and easier in the 

computation of the first eccentricity, e of the normal 

ellipsoid. 
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