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Abstract— In this paper, development and application 

of complementary root-based seeded secant (CRSS) 

iteration method for determination of semi major axis of 

perturbed orbit is presented. The concept of 

complementary root is presented along with the detail 

procedure for the CRSS method and its application in 

the solution to the orbital equations for the semi major 

axis and the nominal mean motion of perturbed orbit. A 

case study perturbed orbit was considered to 

demonstrate the effectiveness of the CRSS method. 

According to the result, the initial single guess root 

value for the semi major axis (𝐚𝟎) is 26,598.53828 km 

from which a complementary root, g(𝐚𝟎 ) of 26604.74217 

km was obtained and the first root (semi major axis,  𝐚𝟏 

in km) determined using secant method  is  26604.7414 

km. The specified error tolerance is 𝟏𝐱 𝟏𝟎−𝟏𝟎  km. The 

results show that it took  two (2) cycles for the CRSS to 

converge at the semi major axis ( 𝐚𝟐 ) value of  

26604.7414 km with estimation error of 8.36735 𝐱 𝟏𝟎−𝟏𝟏 

km  at which point the nominal mean motion  (𝐧𝟎 ) is 

found to be 0.000145489 rad/s. The result of the case 

study perturbed orbit clearly shows the effectiveness of 

the CRSS iteration application in the planetary motion 

studies. 
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I.  INTRODUCTION 

The continual advancements in information and 

communication technologies have given rise to greater 

demand for global communication applications and services 

[1,2,3,4,5,6,7,8] which in turn have led to the deployment 

of several artificial satellites orbiting the earth 

[9,10,11,12,13,14,15,16]. Launching and tracking of these 

satellites in their orbits require accurate knowledge of the 

orbital parameters [17,18,18,19,20,21,22,23]. The orbits 

around the oblate earth are significantly affected by the 

earth’s oblateness [24,25,26,27,28,29,30,31,32]. Such orbit 

around oblate earth are said to be perturbed and the mean 

motion is a function of the anomalistic period. 

However, determination of the nominal mean motion of 

perturbed orbit from the knowledge of the anomalistic 

period is quite complex.  This is due to the complicated 

transcendental nature of the expression relating the mean 

motion and the nominal mean motion of perturbed orbit. As 

such in this paper a variant of secant iteration method is 

developed for solving the complex equation for computing 

the nominal mean motion of perturbed orbit when the 

anomalistic period is give.  The details of the development 

and application of the complementary root-based seeded 

secant (CRSS) iteration method is presented along with 

sample numerical example. 

 

II  DEVELOPMENT OF THE COMPLEMENTARY 

ROOT–BASED SEEDED SECANT ITERATION 

 

A.   The Concept of the Complementary Root of Function 

and the Single Initial Guess Root 

Consider the function of x denoted as f(𝑥) where f(𝑥)  is 

presented in the form; 

f(𝑥) = x + g(𝑥)  = 0 

where g(𝑥)  is another function of x. Hence,  

x = g(𝑥) 

Hence, when  x = g(𝑥) then, the value of x is the root of 

the function and it is equal to  g(𝑥) . When x ≠ g(𝑥)  the 

value of x is not the root of  f(𝑥). In any case, for any given 

value of x, the corresponding value of  g(𝑥)   is the 

complementary root of x. The more the value of x is closer 

to the value of g(𝑥), the closer is the value of  f(𝑥) to zero 

(0) . Hence, when x = g(𝑥) = 0 , the root of  f(𝑥) is found. 

For instance, consider the function; 

 f(𝑥)  =  x − 𝑥2 + 2𝑥 + 4    
The function, f(𝑥)  can be expressed in the root-

complementary root form as; 

 f(𝑥)  = x − g(𝑥) = x − (𝑥2 − 2𝑥 − 4) 

In this case,  

g(𝑥) = (𝑥2 − 2𝑥 − 4) 

Then, at x = 1, g(𝑥) =  −5 and f (𝑥) = 6. Also, at x = 3, 

g(𝑥) =  −1 and f (𝑥) = 4 . However, at x = 4, g(𝑥) =
 4 and f (𝑥) = 0 . Hence, 4 is the root of the 

function,  f(𝑥)  = x − (𝑥2 − 2𝑥 − 4) =  x − 𝑥2 + 2𝑥 + 4. 

Generally, the complementary root iteration method 

requires the function, f(𝑥) to be re-presented in the root-

complementary root form, f(𝑥) = x − g(𝑥) = 0 . Then, a 

single initial guess root, x0 is required to generate the 

complementary root, g(x0) . Hence, the two roots 
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x0 and g(x0) can be used to carry out secant iteration as 

follows; 

𝑥1 =
(𝑥0 )f(g(x0)) − (g(x0))f(𝑥0 ) 

 f(g(x0)) − f(𝑥0 )  
 

After the initial roots, x0 and g(x0) are used to find 𝑥1 , the 

secant method is then used in subsequent iterations to find 

𝑥k  for all K >1. Hence, 

𝑥k =
(𝑥k−2 )f(𝑥k−1 ) − (𝑥k−1 )f(𝑥k−2 ) 

 f(𝑥k−1 ) − f(𝑥k−2 )  
 

In this wise, a seeded secant variant that requires only one 

initial root guess root value based on the root-

complementary root concept has been realized. In this 

paper, this new variant is referred to as complementary 

root–based seeded secant (CRSS) iteration method.  

 

B.  The Procedure for the Complementary Root–Based 

Seeded Secant Iteration 

In general, the CRSS iteration method can be broken into 

two parts; part I focuses on the determination of the initial 

roots and part II focuses on the use of the classical secant 

iteration to determine the desired root of the function that 

satisfy the specified tolerance error.  The procedure for the 

CRSS iteration method can be summarized as follows; 

 

Part I: The initial roots for the secant iterations 

Step 1.1: 

Express the function in the root-complementary root form 

as; 

f(𝑥)  = x − g(𝑥) =0 

Step 1.2: 

Input the initial single guess root value, 𝑥0   and the 

tolerance error , ∈  

Step 1.3: 

Compute the complementary root g(𝑥0 )  
Step 1.4: 

Use the secant method to generate the second root , 𝑥1  as 

follows; 

𝑥1 =
(𝑥0 )f(g(x0)) − (g(x0))f(𝑥0 ) 

 f(g(x0)) − f(𝑥0 )  
 

Part II: The classical secant iterations 

Step 2.1: 

xk = x0 

Step 2.2: 

xk+1 = x1 

Step 2.3: 

k = 2 

Step 2.3: 

𝑥k  =
(𝑥k−2 )f(𝑥k−1 ) − (𝑥k−1 )f(𝑥k−2 ) 

 f(𝑥k−1 ) − f(𝑥k−2 )  
 

Step 2.5: 

If f(𝑥k  ) > ∈  then  

Step 2.5.1.1:     

k =k +1 

Step 2.5.1.2:     

Goto  Step 2.4:     

    Else 

Step 2.5.2.1:     

Output 𝑥k  , k 

     Endif  

 

III.  APPLICATION OF COMPLEMENTARY ROOT–

BASED SEEDED SECANT ITERATION IN 

PERTURBED ORBIT PARAMETER 

COMPUTATION 

 

A.   Analytical Expression for Computing the Semi Major 

Axis and the Nominal Mean Motion of Perturbed 

Orbit 

Notably, in this paper, value of the semi major axis (a) and 

the nominal mean motion (𝑛𝑜) are determined based on a 

given anomalistic period of the orbit. When the anomalistic 

period (P) is given, the orbit mean motion, denoted as n,  is 

given as; 

The semi major axis (a) and the nominal mean motion (𝑛𝑜)  

of an orbit that is not perturbed are related as follows; 

𝑛𝑜 = √
𝜇

𝑎3   (1) 

Similarly, the perturbed orbit mean motion (n) is related to 

the orbit anomalistic period (p) as follows; 

𝑛 =  
2𝜋

𝑃
   (2) 

Furthermore, the perturbed orbit mean motion (n) is related 

to the nominal mean motion (𝑛𝑜) and the semi major axis 

(a) given as follows; 

𝑛 =
2𝜋

𝑃
= 𝑛𝑜 [1 +  

𝐾1(1−1.5sin(𝑖)2)

𝑎2(1−𝑒2)1.5 ] = √
𝜇

𝑎3 [1 +

 
𝐾1(1−1.5sin(𝑖)2)

𝑎2(1−𝑒2)1.5 ]    (3) 

B.     The Root-Complementary Root Form of the Function 

for Semi Major Axis (a) 

In this paper, the semi major axis (a) is first determined 

when the anomalistic period of the perturbed orbit is 

provided. In order to apply the complementary root–based 

seeded secant iteration for he determination of the semi 

major axis, the function of the semi major axis must be re-

presented in the root-complementary root form. From Eq 3, 

the semi major axis (a) is given as follows; 
𝑛2

[1+ 
𝐾1(1−1.5sin(𝑖)2)

𝑎2(1−𝑒2)
1.5 ]

2 =
𝜇

𝑎3             (4) 

Hence; 

𝑎 = (
𝜇

𝑛2
[1 +  

𝐾1(1−1.5sin(𝑖)2)

𝑎2(1−𝑒2)1.5
]

2

)
1/3

= (
𝜇

(
2𝜋

𝑃
)

2 [1 +  
𝐾1(1−1.5sin(𝑖)2)

𝑎2(1−𝑒2)1.5
]

2

)

1/3

   (5) 

The root-complementary root form 

f(𝑎𝑘) = 𝑎𝑘 − (
𝜇

𝑛2 [1 +  
𝐾1(1−1.5sin(𝑖)2)

(𝑎𝑘)2(1−𝑒2)1.5 ]
2

)
1/3

= 𝑎𝑘 −

(
𝜇

(
2𝜋

𝑃
)

2 [1 +  
𝐾1(1−1.5sin(𝑖)2)

(𝑎𝑘)2(1−𝑒2)1.5 ]
2

)

1/3

          (6)   

Essentially, the complementary root function, g(𝑎𝑘)  is 

given as  

g(𝑎𝑘) = (
𝜇

𝑛2 [1 + 
𝐾1(1−1.5sin(𝑖)2)

(𝑎𝑘)2(1−𝑒2)1.5 ]
2

)
1/3

= (
𝜇

(
2𝜋

𝑃
)

2 [1 +

 
𝐾1(1−1.5sin(𝑖)2)

(𝑎𝑘)2(1−𝑒2)1.5 ]
2

)

1/3

          (7)   
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C.  Application of the CRSS Iteration Procedure for the 

Computation of the Semi Major Axis   of a 

Perturbed Orbit 

The CRSS iteration procedure adapted for the computation 

of the semi major axis (a) of a perturbed orbit can be 

summarized as follows; 

Part I: The initial roots for the secant iterations 

Step 1.1: 

Express the function in the root-complementary root form 

as; 

 f(𝑎𝑘) = 𝑎𝑘 − (
𝜇

𝑛2 [1 + 
𝐾1(1−1.5sin(𝑖)2)

(𝑎𝑘)2(1−𝑒2)1.5 ]
2

)
1/3

= 𝑎𝑘 −

(
𝜇

(
2𝜋

𝑃
)

2 [1 +  
𝐾1(1−1.5sin(𝑖)2)

(𝑎𝑘)2(1−𝑒2)1.5 ]
2

)

1/3

           

Step 1.2: 

Input the initial single guess root value, 𝑎0   and the 

tolerance error , ∈  

Step 1.3: 

Compute the complementary root g(𝑎0 ) where 

g(𝑎0) = (
𝜇

𝑛2
[1 +  

𝐾1(1 − 1.5sin(𝑖)2)

(𝑎0)2(1 − 𝑒2)1.5
]

2

)

1/3

= (
𝜇

(
2𝜋

𝑃
)

2 [1 +  
𝐾1(1 − 1.5sin(𝑖)2)

(𝑎0)2(1 − 𝑒2)1.5
]

2

)

1/3

 

Step 1.4: 

Use the secant method to generate the second root , 𝑥1  as 

follows; 

𝑎1 =
(𝑎0 )f(g(𝑎0)) − (g(𝑎0))f(𝑎0) 

 f(g(𝑎0)) − f(𝑎0)  
 

Part II: The classical secant iterations 

Step 2.1: 

ak = a0 

Step 2.2: 

ak+1 = a1 

Step 2.3: 

k = 2 

Step 2.3: 

𝑎k  =
(𝑎k−2 )f(𝑎k−1 ) − (𝑎k−1 )f(𝑎k−2 ) 

 f(𝑎k−1 ) − f(𝑎k−2 )  
 

Step 2.5: 

If f(𝑎k  ) > ∈  then  

Step 2.5.1.1:     

k =k +1 

Step 2.5.1.2:     

Goto  Step 2.4:     

    Else 

Step 2.5.2.1:     

Output 𝑎k  , k 

     Endif  

 

IV.   RESULTS AND DISCUSSION 

The complementary root-based seeded secant (CRSS) 

iteration was applied in the  computation of the semi major 

axis as well as the nominal mean motion of a case study 

perturbed orbit having the orbital parameters shown in 

Table 1. The results of the initial value determination and 

the secant iteration for the case study perturbed orbit are 

shown in Table 2. According to the result, the initial single 

guess root value for the semi major axis ( a0 ) is 

26,598.53828 km from which a complementary root,  g(a0 ) 

of 26604.74217 km was obtained and the first root (semi 

major axis,  a1 in km) determined using secant method  is  

26604.7414 km. The specified error tolerance is 1x 10−10 

km. As such, the results in Table 2 show that it took about 

two (2) cycles for the CRSS to converge at the semi major 

axis (a3) value of  26604.7414km with estimation error of 

8.36735  x 10−11  km  at which point the nominal mean 

motion  (𝑛0 )  is found to be 0.000145489 rad/s. The result 

of the case study perturbed orbit clearly shows the 

effectiveness of the CRSS iteration application in the 

planetary motion studies. 

 

Table 1  The case study  perturbed orbit parameters 

S/N PARAMETER NAME AND SYMBOL PARAMETER VALUE AND UNIT 

1 Anomalistic Period (P) 11.98 hour 

2 Inclination Angle (i) 0 degree 

3 Eccentricity (e) 0.0018 

4 Constant (𝐾1) 
66,063.1704 

𝑘𝑚2 

5 
Earth Geocentric Gravitational Constant ( 
𝜇) 3.986005 x1014 𝑚3 𝑠2⁄  
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Table 2  The results of the initial value determination and the secant iteration for the case study perturbed orbit 

Result of the initial root determination for the secant iteration for K = 0 

Cycle 
Initial guess semi major 

axis,  𝒂𝟎  in km 

Complementary root,  g(𝒂𝟎 )    
of the initial guess semi major 

axis,  𝒂𝟎  in km 

First root (semi major axis,  𝒂𝟏 in km) 
determined using secant method   

0 26,598.53828 26604.74217 26604.7414 

Result of the secant iteration for K  > 1 

Cycle 
Semi major axis,  

𝒂𝐤  in km 

Complementary 
root,  g(𝒂𝐤 )   in 

km 

Error  , f(𝒂𝐤 )  in 
km 

Nominal mean motion  

(𝒏𝟎 )   in rad/s 

Mean  motion  (n) 

in rad/s 

1 26604.74217 26604.7414 0.00077225 0.000145489 0.000145503 

2 26604.7414 26604.7414 8.36735E-11 0.000145489  0.000145503 

3 26604.7414 26604.7414 0 0.000145489 0.000145503 

4 26604.7414 26604.7414 0 0.000145489 0.000145503 
 

V.   CONCLUSION 

A variant of scant iteration method is developed and 

applied for computing the semi major axis of a perturbed 

orbit  as well as its nominal mean motion.  The new scant 

iteration variant is called complementary root-based seeded 

secant (CRSS) iteration method. The concept of 

complementary root is presented along with the detail 

procedure for the CRSS method and its application in the 

solution to the equations for the semi major axis of a 

perturbed orbit  as well as its nominal mean motion. A case 

study perturbed orbit was considered to demonstrate the 

effectiveness of the CRSS method. 
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