
International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 5 Issue 3, March - 2020

www.imjst.org

IMJSTP29120214 843

Data Recovery on The Hard Disk in
FAT32 Format

Nguyen Tien Duy

Thai Nguyen University of Technology
Thai Nguyen University
Thai Nguyen, Vietnam

duynt@tnut.edu.vn

Abstract—Data is a very important component
of computing systems. Data storage usually files
in many formats. During the process of using,
storing, copying and transporting data files, it is
inevitable for them to accidentally delete data. In
this situation, being able to "retrieve" those data
files is essential. Originating from that essential
need, this paper has studied the logical structure
of hard disk in FAT32 format, mechanism of
storing and managing data on disk, and how to
delete a data file on disk. Since then proposed
algorithms for recovering deleted data. Utility
software according to the proposed algorithm has
also been installed. The test results show that the
ability to recover deleted files is very good.

Keywords—FAT32, Lost and Found, Data
Recovery, Get Data Back

I. INTRODUCTION

Data is a representation of the information, in fact,
the information exists very diverse so the data is also
very diverse. In the strong development of automatic
information processing on computers, data needs to
be shared for many users, multiple uses. That means
data needs to be communicated, stored and
processed. In most systems today, the value of the
data is very large, many times greater than the cost of
the hardware system. For example, data stored in
sectors such as military, banking, meteorology, etc. or
for every business or individual, the data is of great
value and importance. With the importance of data,
depending on the different systems, one needs to back
up the data at different times so that in case of loss of
data in the process of working, there is a backup copy
[1], [2].

When working with data, a common problem for
computer users is losing data (for some reason, often
erasing) on storage devices, especially losing data on
the hard disk. When users want to find their important
data in many ways, as quickly as possible. It’s not that
backing up data is the perfect solution, in many
situations where there is no backup, the problem
becomes serious. An effective measure, in this case,
requires a utility tool that allows the above mentioned
problem to be solved [5].

In this study, we study the physical structure, logical
structure of hard magnetic disk in FAT32 format,

storage mechanism and data management on disk.
Since then the proposed data recovery algorithm has
been deleted. Algorithm installation and software
testing were also carried out. Test results show that
the ability to recover data is quite good in case the
hard drive is not fragmented. When there is
fragmentation, resilience is not completely.

II. MANAGE FILES ON THE HARD DISK IN FAT32

FORMAT

A. Boot Sector (FAT Partition Boot Sector)

The Boot Sector contains information that the file
system uses to access the volume. On x86 computers,
the MBR uses the Boot Sector on the system partition
to load the operating system kernel files. The Table 1
describes the information fields in the Boot Sector with
a FAT file system formatted Volume.

TABLE I. INFORMATION FIELDS IN BOOT SECTOR

Byte
Offset

(in
hex)

Field
Length

Sample
Value

Meaning

00 3 bytes EB 3C 90 Jump instruction

03 8 bytes MSDOS5.0
OEM Name in
text

0B 25 bytes
BIOS
Parameter
Block

24 26 bytes
Extended BIOS
Parameter
Block

3E 448 bytes Bootstrap code

1FE 2 bytes 0x55AA
End of sector
marker

The Table 2 describes the fields in the BIOS
parameter block and the expanded BIOS parameter
block.

http://www.imjst.org/
mailto:duynt@tnut.edu.vn

International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 5 Issue 3, March - 2020

www.imjst.org

IMJSTP29120214 844

TABLE II. BIOS PARAMETER BLOCK AND EXTENDED BIOS

PARAMETER BLOCK FIELDS

Byte
Offset

Field
Length

Sample
Value

Meaning

0x0B WORD 0x0002

Bytes per Sector. The
size of a hardware
sector. For most disks
in use in the United
States, the value of
this field is 512.

0x0D BYTE 0x08

Sectors Per Cluster.
The number of
sectors in a cluster.
The default cluster
size for a volume
depends on the
volume size and the
file system.

0x0E WORD 0x0100

Reserved Sectors.
The number of
sectors from the
Partition Boot Sector
to the start of the first
file allocation table,
including the Partition
Boot Sector. The
minimum value is 1. If
the value is greater
than 1, it means that
the bootstrap code is
too long to fit
completely in the
Partition Boot Sector.

0x10 BYTE 0x02

Number of file
allocation tables
(FATs). The number
of copies of the file
allocation table on the
volume. Typically, the
value of this field is 2.

0x11 WORD 0x0002

Root Entries. The
total number of file
name entries that can
be stored in the root
folder of the volume.
One entry is always
used as a Volume
Label. Files with long
filenames use up
multiple entries per
file. Therefore, the
largest number of files
in the root folder is
typically 511, but you
will run out of entries
sooner if you use long

Byte
Offset

Field
Length

Sample
Value

Meaning

filenames.

0x13 WORD 0x0000

Small Sectors. The
number of sectors on
the volume if the
number fits in 16 bits
(65535). For volumes
larger than 65536
sectors, this field has
a value of 0 and the
Large Sectors field is
used instead.

0x15 BYTE 0xF8

Media Type. Provides
information about the
media being used. A
value of 0xF8
indicates a hard disk.

0x16 WORD 0xC900

Sectors per file
allocation table (FAT).
Number of sectors
occupied by each of
the file allocation
tables on the volume.
By using this
information, together
with the Number of
FATs and Reserved
Sectors, you can
compute where the
root folder begins. By
using the number of
entries in the root
folder, you can also
compute where the
user data area of the
volume begins.

0x18 WORD 0x3F00

Sectors per Track.
The apparent disk
geometry in use when
the disk was low-level
formatted.

0x1A WORD 0x1000

Number of Heads.
The apparent disk
geometry in use when
the disk was low-level
formatted.

0x1C DWORD
3F 00
00 00

Hidden Sectors.
Same as the Relative
Sector field in the
Partition Table.

0x20 DWORD
51 42
06 00

Large Sectors. If the
Small Sectors field is
zero, this field

http://www.imjst.org/

International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 5 Issue 3, March - 2020

www.imjst.org

IMJSTP29120214 845

Byte
Offset

Field
Length

Sample
Value

Meaning

contains the total
number of sectors in
the volume. If Small
Sectors is nonzero,
this field contains
zero..

0x24 BYTE 0x80

Physical Disk
Number. This is
related to the BIOS
physical disk number.
Floppy drives are
numbered starting
with 0x00 for the A
disk. Physical hard
disks are numbered
starting with 0x80.
The value is typically
0x80 for hard disks,
regardless of how
many physical disk
drives exist, because
the value is only
relevant if the device
is the startup disk.

0x25 BYTE 0x00
Current Head. Not
used by the FAT file
system.

0x26 BYTE 0x29

Signature. Must be
either 0x28 or 0x29 in
order to be
recognized by
Windows NT.

0x27 4 bytes
CE 13
46 30

Volume Serial
Number. A unique
number that is
created when you
format the volume.

0x2B 11 bytes
NO
NAME

Volume Label. This
field was used to
store the volume
label, but the volume
label is now stored as
special file in the root
directory.

0x36 8 bytes FAT16

System ID. Either
FAT12 or FAT16,
depending on the
format of the disk.

B. Files and Folders were deleted

When we delete a file, the operating system does
not actually delete its data, it does the following two
things:

 Put the first byte in the corresponding entry
with 0xE5 (229).

 Delete 0x00000000 values of all FAT entries
corresponding to the file’s supply chain (32 bits value).

In case the object to be deleted is a folder, DOS
deletes the objects in it first and then deletes the
folder.

Thus, in essence, the information content of a file
(or directory) remains intact on its clusters. The
operating system considers these clusters to be free
because the entries corresponding to them in FAT are
0. It can be re-allocated to other files when creating
and writing files to disk, new information will be
overwritten onto the old information.

If the supply chain of a deleted file has a serial
number, based on the cluster number starting in the
directory entry and the size of the file, it is possible to
recover this deleted file. By modifying the first byte of
the directory entry to a value other than 0x2E and
recording the FAT entry sequence starting from the
entry with the serial number in the directory entry with
the successive value, the last FAT entry is recording
the value indicating the end (the number of clusters of
files can be calculated based on the size of the file).

III. RECOVER THE FILES AND FOLDERS WERE DELETED

A. Algorithm

Based on the structure and storage organization of
the hard disk formatted in the FAT file system, we can
build an algorithm to search for deleted files and
perform read data of a file to record it as a new file,
here we just copy the data from the deleted file into a
new file "image" with its format exactly in a binary
format without knowing the source that created it. In
principle, it is possible to recover files by modifying
Root and FAT, when the file is restored to its original
location when not deleted, but writing the information
to the system area of the drive Root and FAT is not
recommended. If the amendment is incorrect, the
consequence is that it will not only recover data but
also affect other files (folders). The solution to copy the
data is the securest and chosen in this case.
Specifically, simplify the implementation steps of the
algorithm as follows:

Read_DBR() // Determine the

parameters of the drive

Output:

 bytes/sector

 sectors/cluster

 number of FAT

 number of sectors/root

 number of sectors/FAT

 First cluster of Root

http://www.imjst.org/

International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 5 Issue 3, March - 2020

www.imjst.org

IMJSTP29120214 846

 First cluster of Data

End of Read_DBR

Read_Cluster_Root()

Output:

 List of deleted files.

 Allow users to select files to

be recovered.

 Open a new file

 Get the size file, determine the

number of clusters (k).

 Get the starting cluster number

of the file.

Loop:

- Read data

- Write to the file

Read FAT, determine the next

cluster number.

Until the value

entry_FAT<>0 // Fragments

- When entry_FAT<>0, next //Jump

over the fragmented area

- Goto Read FAT

End_Loop

 Close file

End of Reeead_Cluster_Root

B. Fragmentation and impact on data recovery

In fact, the array clusters supply for a file is often
discontinuous, especially when the file is big. This
phenomenon is called a fragment of the file.
Fragmentation creates during successive creation and
deletion of files (folders) while working. In addition, for
multitasking operating systems, it uses the free part of
the hard disk during an operation to implement the
virtual memory mechanism cause to fragmentation (we
do not go into this issue).

When formatting, copying data to the drive and
installing the entire system, there was no
fragmentation. Increasing fragmentation as the work
process. Even then, there may be files that are stored
in different sectors on the disk. Access to the
information of the fragmented files will take longer than
the non-fragmented files (because it must control the
read/write head to the disk areas with very far
coordinates), so after each working time of the drive
hard drive, we should “defragment” with the built-in
utility of Windows - Defragment utility.

When fragmentation, the recovery of deleted files
has many difficulties, making the probability of
recovery is not 100%, even many cases can not be
restored.

Assuming a file is written to disk, the operating
system will provide free space for this file. However,
these empty areas are much smaller than the file size.
Therefore, this file is fragmented into several
segments, interwoven with it as other files. When this
file is deleted, if the segments interwoven with it are
being used (or bad), not in a free state, then the
chances of re-reading information from the sections of

the deleted file are large. On the contrary, the
interleaved sections with the file deleted in this free
state (the file interwoven with it have also been
deleted), it is very difficult to determine which of these
free join sectors belong to which file. We are in need of
restoration because the information about these
complexes is zero in the FAT table.

However, in many situations, it is valuable to save
some deleted data.

C. Installation and testing

To coding the above algorithm, we can use certain
programming languages among many possible
languages.

 Assembly is a low-level language, showing the
advantage of being a compact target code, the
program runs fast. In the coding process of the
algorithm, calling DOS and BIOS services is very
intuitive. However, when solving a problem of
complexity and relative magnitude, this language
reveals many disadvantages: creating an elaborate
interface, difficult to control algorithms and generally
takes a lot of effort of the programmer.

 Languages like Pascal and C are high-level
languages that allow for deep intervention into the
system, making interrupt calls (DOS and BIOS
services) easy. These languages are highly scholarly,
close and simple with an algorithm coding. Pascal is
tightly structured, along with C, these are familiar
languages for students and most people who know
how to program. One drawback of these languages is
the elaborate interface creation, the program may not
be compatible in some Windows environments.

In this study, I chose Pascal as a programming
language to encode algorithms to suit the majority of
students who want to learn about this problem. Some
data structures and procedures are presented in the
Appendix.

Testing the program has been done many times
with different sized files. Most recently deleted files can
be recovered almost completely. In some situations of
creating and deleting files after deleting files to
recover, the ability to recover is low. Especially when
the hard drive is in a fragmented state, the recovery
ability is not high.

IV. CONCLUSION

Based on a study of the structure and organization
of data storage from a hard disk formatted according to
the FAT file system and the meaning of data recovery.
This study has achieved certain results. In many
experiments with data files of sizes, fragmentation, the
program almost recovered data.

This study was only installed on hard drives with
the FAT file system. Next, we will develop this program
to a more complete level, expand the NTFS file system
format, thoroughly overcome the existing problems,
allowing data recovery in many logical drives on one

http://www.imjst.org/

International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 5 Issue 3, March - 2020

www.imjst.org

IMJSTP29120214 847

machine single or run on the network to recover data
from another device.

ACKNOWLEDGMENT

This research was funded by the science and
technology fund of the Thai Nguyen University of
Technology (TNUT).

REFERENCES

[1] William Stallings; Computer Organization and
Architecture Designing for Performation; Prentice Hall.

[2] Shri Vishnu Engineering College for women::
Bhimavaram Department of Information Technology,
“Computer Organization and Architecture lecture
notes”.

[3] “Design of the FAT file system”,
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_
system

[4] Michael Hordeski, Personal Computer
Interfaces, Mc. Graw Hill, 1995.

[5] Andrew S. Tanenbaum, Modern Operating
Systems, Prentice Hall, 1996.

[6] S.I.Ahson, “Microprocessor with application in
Process Control”, Tata Mc.Graw Hill, 1984.

[7] Gustaf Olsson, Gianguido Piani, “Computer
Systems for Automation and Control”, Prentice Hall,
1990.

[8] Mikell P.Groover, Automation, Production
System and Computer Integrated Manufacturing,
Prentice Hall.

[9] “Complete info source: NTFS & FAT file
systems and data recovery”,
https://www.ntfs.com/index.html

APPENDIX: SOURCE PROGRAM

When implementing the algorithm, several main data structures and procedures are constructed as

follows:

Data structure:
Type

 Package = record

 size: byte;

 reserved1: byte;

 NumSec: byte;

 reserved2: byte;

 offset: word;

 segment: word;

 LBA: array[0..1] of longint

 end;

 Buffer = record

 BS_jmpBoot: array[0..2] of byte;

 BS_OEMName: array[0..7] of char;

 BPB_BytsPerSec: word;

 BPB_SecPerClus: byte;

 BPB_RsvSecCnt: word;

 BPB_NumFats: byte;

 BPB_RootEntCnt: word;

 BPB_TotSec16: word;

 BPB_Media: byte;

 BPB_FATSz16: word;

 BPB_SecPerTrk: word;

 BPB_NumHeads: word;

 BPB_HiddSec: longint;

 BPB_TotSec32: longint;

 BPB_FATSz32: longint;

 BPB_ExtFlags: word;

 BPB_FSVer: word;

 BPB_RootClus: longint;

 BPB_FSInfo: word;

 BPB_BkBootSec: word;

 BPB_Reserved: array[0..11] of byte;

 BS_DrvNum: byte;

 BS_Reserved1: byte;

 BS_BootSig: byte;

http://www.imjst.org/
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
https://www.ntfs.com/index.html

International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 5 Issue 3, March - 2020

www.imjst.org

IMJSTP29120214 848

 BS_VolID: longint;

 BS_VolLab: array[0..10] of char;

 BS_FilSysType: array[0..7] of char;

 BS_R: array[0..421] of byte

 end;

 Sector = array[0..511] of byte;

 Cluster = array[0..7] of Sector;

Procedures:
procedure read_dbr;

Begin

 with DAP do

 begin

 size:=$10;

 reserved1:=0;

 NumSec:=1;

 reserved2:=0;

 offset:= ofs(dbr);

 segment:=seg(dbr);

 LBA[0]:=63;

 LBA[1]:=0

 end;

 with r do

 begin

 ax:=$4200;

 dl:=$80;

 ds:=seg(DAP);

 si:=ofs(DAP)

 end;

 intr($13, r);

End;

procedure read_sector(num_sec: longint; var buffer: Sector);

Begin

 with DAP do

 begin

 size:=$10;

 reserved1:=0;

 NumSec:=1;

 reserved2:=0;

 offset:= ofs(buffer);

 segment:=seg(buffer);

 LBA[0]:=num_sec+63;

 LBA[1]:=0

 end;

 with r do

 begin

 ax:=$4200;

 dl:=$80;

 ds:=seg(DAP);

 si:=ofs(DAP)

 end;

 intr($13, r);

End;

procedure read_cluster(num_clus: longint; var buffer: Cluster);

var

 i: byte;

 num_sec: longint;

Begin

 num_sec:=((num_clus-2)*dbr.BPB_SecPerClus+FirstDataSector;

 for i:=0 to 7 do

 read_sector(num_sec+i, buffer[i]);

End;

http://www.imjst.org/

International Multilingual Journal of Science and Technology (IMJST)

ISSN: 2528-9810

Vol. 5 Issue 3, March - 2020

www.imjst.org

IMJSTP29120214 849

file_size:=meml[seg(data_clus[k,i*32+28]):ofs(data_clus[k,i*32+28])];

Entry_Num:=round(file_size/(dbr.BPB_BytsPerSec*dbr.BPB_SecPerClus))+1;

Clus_NumH:=memw[seg(data_clus[k,i*32+20]):ofs(data_clus[k,i*32+20])];

Clus_NumH:= (Clus_NumH shl 16);

Clus_NumL:= memw[seg(data_clus[k,i*32+26]):ofs(data_clus[k,i*32+26])];

First_Clus_Num:=Clus_NumH+Clus_NumL;

writeln(‘Fisrt Cluster: ‘, First_Clus_Num);

next_clus:=First_Clus_Num+1;

entry_fat:=0;

assign(f, ‘C:\recover.bak’);

rewrite(f);

k:=0;

while (k<Entry_Num) do

begin

repeat

read_cluster(next_clus, data);

for i:=0 to 7 do

for j:=0 to 511 do

write(f, data[i, j]);

FATOffset:=next_clus*4;

ThisFATSecNum:=dbr.BPB_RsvSecCnt+

(FATOffset div dbr.BPB_BytsPerSec);

ThisFATEntOffset:=FATOffset mod dbr.BPB_BytsPerSec;

read_sector(ThisFATSecNum, fat);

entry_fat:=meml[seg(fat[ThisFATEntOffset]):

ofs(fat[ThisFATEntOffset])];

k:=k+1; next_clus:=next_clus+1;

until (entry_fat<>0);

while (entry_fat<>0) do

begin

FATOffset:=(next_clus)*4;

ThisFATSecNum:=dbr.BPB_RsvSecCnt+

(FATOffset div dbr.BPB_BytsPerSec);

ThisFATEntOffset:=FATOffset mod dbr.BPB_BytsPerSec;

read_sector(ThisFATSecNum, fat);

entry_fat:=meml[seg(fat[ThisFATEntOffset]):

ofs(fat[ThisFATEntOffset])];

inc(next_clus)

end

end;

close(f);

http://www.imjst.org/

