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Abstract— In this paper five different Least Mean 
Square (LMS)-based adaptive filter algorithms are 
presented. Then, a modified version of the LMS 
algorithm is proposed which combines the step 
size adaptation mechanisms of the "pure" LMS 
algorithm and that of the Normalized Least Mean 
Square (NLMS)  algorithm. The performance of the 
various LMS-based adaptive filter algorithms 
presented in this paper are then evaluated and 
compared based on Mathlab simulation of noise 
cancellation using each of the LMS algorithms. In 
the simulation, the input signal (or desired signal) 
is from Hallelujah chorus by Handel whereas 
Gaussian noise was used as noise signal.  The 
mixture of the input signal and noise signal was 
subjected to filtering using each of the five 
adaptive filter algorithms presented in this paper as 
well as the proposed adaptive filter algorithm 
developed in this paper. The plot of the output 
signal, the error signal, the combination of desired 
signal, output signal and error signal and the 
coefficient output are given for each algorithm 
along with the R-square values, sum of square 
error and root mean square error of different 
models. The results show that the proposed 
modified  LMS model is the best model for 
cancelling noise in the desired signal (Handel’s 
Hallelujah chorus) since it has  the highest R-
square value of  99.83 %, the lowest SSE value of 
5.0011 and the lowest RMSE value of 0.0081. The 
next model in performance rating is the NLMS with 
R-square value of  99.81 %, SSE value of 5.0112  
and RMSE value of 0.0083.  On the other hand, the 
sign-sign least mean square (SSLMS) model has 
the highest sum of square error value of  99.9945. 
This implies that it is inefficient to use SSLMS to 
cancel noise in the given case considered in this 
paper.  

 

Keywords—Adaptive Filter, Normalized Least 
Mean Square (NLMS) , Sign-Sign Least Mean 
Square (SSLMS), Sign-Data Least Mean Square 
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I. INTRODUCTION 

 In many digital signal processing applications 
such as channel equalization, echo cancellation and 
noise cancellation the second order statistics cannot be 
effectively specified [1, 2, 3, 4,5].  In such applications, 
adaptive filters with adjustable coefficients are 

employed. Basically, adaptive filter automatically 
adjusts its transfer function according to its operating 
optimizing algorithm that allows the filter coefficients to 
adapt to the signal statics [ 2, 3, 5, 6, 7]. Essentially, 
the adaptive filter adapts its performance based on the 
input signal; the algorithm enables it to adjust its 
parameters to produce an output that matches the 
output of an unknown system [2, 8, 9, 10,11].  

 There are different approaches used in 
adaptive filtering. However, in those applications where 
adaptive filtering is needed, the Least Mean Squares 
(LMS) algorithm is the most widely used algorithm  [12, 
13, 14, 15, 16, 17, 18, 19]. Particularly, compared to 
other adaptive filtering techniques, LMS   algorithm has 
been found to be simple, fast, and robust [20, 21, 22, 
23]. Importantly, the algorithm step size is the key 
intrinsic feature of the LMS algorithm and the step size 
requires careful adjustment.  In order to realize small 
excess mean square error small step size may be used 
but it results in slow convergence.  On the other hand, 
using large step size leads to  fast adaptation and 
hence fast convergence, but it may result in loss of 
stability. Essentially, the  main drawback of the "pure" 
LMS algorithm is that it is sensitive to the step size .  
This makes it very hard to choose a learning rate that 
ensures stability of the algorithm [24]. The Normalised 
least mean squares filter (NLMS) is a variant of the 
LMS algorithm that solves this problem by normalising 
with the power of the input [2, 25].  Accordingly, 
researchers have continued to develop many version of 
the LMS algorithm with different step size adaptation 
mechanisms. 

In this paper some LMS algorithms are 
presented and a modified version of the LMS algorithm 
is proposed which combines the step size adaptation 
mechanisms of the "pure" LMS algorithm and that of 
the NLMS algorithm. The performance of the various 
LMS algorithms presented in this paper are then 
evaluated and compared based on Mathlab simulation 
of noise cancellation using each of the LMS algorithms.  

II.  LITERATURE REVIEW 

An adaptive filter is a time variant filter whose 
coefficients are adjusted in a way to optimize the error 
of the signal or to satisfy some predetermined 
optimization criterion [25, 26,  27].  They can 
automatically adapt (self-optimize) in the face of 
changing system requirements and they can be trained 
to perform specific filtering and decision making tasks 
according to some updating equations. In general, any 
system with a finite number of parameters that affect 
how y(n) is computed from x(n) could be used for the 
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adaptive filter. Adaptive filter finds application in many 
signal processing problems , however, in this paper, 
the focus is on noise cancellation.  Figure  1 shows a 
simplified noise cancellation via adaptive filter. 

 
Figure  1: Simplified noise cancellation via adaptive 

filter 
Based on figure 1, x(k) is the input signal, n(k) 

is the noise, d(k) is the desired response, h(k) is the 
impulse response of adaptive filter,  y(k) is the filtered 

output and e(k) is the error signal. The objective 
function (which is minimizing the error) is given by: 

∑ 𝑒2(𝑘)𝑁−1
𝑘=0  𝑜𝑟 𝐸(𝑒𝑘(𝑘))       (1) 

where: 𝑒2(𝑘) is the estimation error,  N is the 
number of iteration  and E is the expectation operation. 

There different types of via adaptive filters used 
for noise cancellation. However, the Least Mean 
Square (LSM) method has proven to be the most 
popular. Accordingly, over the years various types of 
LMS adaptive filter have been developed. Some of 
these LMS adaptive filter are considered in this section 
and is the next section of this paper, a proposed 
modified version of some existing LMS adaptive filter is 
presented and its performance is compared with those 
of the existing LMS adaptive filter presented in the 
paper. 
A. Least Mean Square Adaptive Filter 

The flowchart for the LMS adaptive filter is 
shown in Figure 2. 
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Figure 2: Flowchart for the LMS algorithm 

 
The least mean square model was carried out 

with steepest descent method of optimization  [7, 11, 
28, 29,  30]. The objective function of  LMS is to cancel 
out noise in the desired signal which is of the form: 

 𝐸(𝑒2(𝑘))                  (2) 
where: E is the expectation operation, 𝑒(𝑘) is 

the estimation error at time n given by 
 𝑒(𝑛) =  𝑑(𝑛) − 𝑦(𝑛)      (3) 

Where: 

 𝑦(𝑛) =  ∑ 𝑤𝑖(𝑛)𝑥(𝑛 − 𝑖)𝐿−1
𝑖=0                    (3) 

 𝑊(𝑛) = [𝑤0(𝑛) 𝑤1(𝑛) … 𝑤𝐿−1(𝑛) 𝑤𝐿−2(𝑛)]𝑇 
              (5) 

 𝑋(𝑛) = [𝑥(𝑛) 𝑥(𝑛 − 1) … 𝑥(𝑛 − 𝐿 + 2) 𝑥(𝑛 − 𝐿 + 1)]𝑇 
          (6) 

The expected solution after filtering was: 

 𝑊(𝑛 + 1) =  𝑊(𝑛) + ∆𝑊(𝑛)     
     (7) 

where: ∆𝑊(𝑛)  is an incrementing factor, n is 
the time, W(n) is the total weights to be adjusted at 
time n, X(n) is the total input signal at time n, w(n) and 
x(n) are the weights and input signals of each adaptive 
filter coefficients respectively. The steepest descent 
gradient searching was used. 

The steepest descent is stable and will 
converge if: 

lim𝑛 →∞(𝐼 − 2𝜇𝑁)𝑛 = 0      (8) 

Yes 

No 

Start 

Add the input signal 

x(k) 

Generate the desired noise d(k) with a combination of 

input signal and white Gaussian noise 

Initial the weights of the adaptive filter Coefficients W(0) and 

weights increment parameter ∆𝑊(𝑛) 

If W(n) = W(n+1) and if lim𝑛 →∞(𝐼 −
2𝜇𝑁)𝑛 = 0 

Print Results 

Stop 
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Where μ  is the step size (or convergence 
factor) that determines the stability and the 
convergence rate of the algorithm.  
B. Normalized Least Mean Square Adaptive Filter 

Model 
The normalized least mean square filter is a 

variant of least mean square filter that normalizes the 
power of the input [13, 18, 31]. The model can be 
summarized as follows; 

𝑥(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝐿 + 1)]𝑇  
     (9) 

𝑒(𝑛) =  𝑑(𝑛) − ℎ𝐻(𝑛)𝑥(𝑛)   
       (10) 

ℎ(𝑛 + 1) = ℎ(𝑛) + (
𝜇𝑒∗(𝑛)𝑥(𝑛)

𝑥𝐻(𝑛)𝑥(𝑛)
)   

    (11) 

where: x(n) is the input signal, 𝜇 is the learning 
rate that guarantees the stability of the algorithm, L is 
the filter order, e(n) is the error of the current sample n, 
d(n) is the desired signal of the current sample n, h(n) 
is the impulse response, H or T is the conjugate 
transpose. If there is no interference (v(n) = 0), the 
optimal learning rate for the NLMS algorithm is; 

𝜇𝑜𝑝𝑡 = 1       (12) 

In other words the learning rate is independent 
of the input x(n) and real impulse response h(n). But 
since there is interference, the optimal learning rate is; 

𝜇𝑜𝑝𝑡 =
𝐸[|𝑦(𝑛)−𝑦∗(𝑛)|2]

𝐸[|𝑒(𝑛)|2]
       (13) 

The flowchart for the normalized least mean 
square (LMS) adaptive filter is shown in Figure 3. 
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Figure 3: Flowchart for the NLMS algorithm 

 
C.      Sign Least Mean Square Model 

The sign least mean square model used in this 
study is given as  [32, 33,  34]; 

 𝑦(𝑛) =  𝑤(𝑛 − 1)𝑢(𝑛)     (14) 
where: y(n) is the filtered output at step n, w(n) 

is the vector of filter weight estimates at step n,  n is the 
current time index and u(n) is the vector of the buffered 
input samples at step n. The error e(n) is given as: 

e(n) = d(n) – y(n)       (15) 

where: e(n) is the estimated error at step n, 
d(n) is the desired response at step n and y(n) is the 
filtered output at step n. The weights of the filter w(n) 
was adjusted with the model: 

𝑤(𝑛) =  𝑤(𝑛 − 1) +  𝑓(𝑢(𝑛), 𝑒(𝑛), 𝜇)  
                 (16) 

Where: 

𝑓(𝑢(𝑛), 𝑒(𝑛), 𝜇) =  𝜇𝑒(𝑛)𝑢∗(𝑛)   
     (17) 

YES 

NO 

Start 

Input the input signal and the white 

Gaussian noise 

Determine the desired signal via combining the input signal 

and the noise 

Determine the initial impulse signal h(n) and obtain the error 

signal e(n) 

If h(n) –h(n+1) is less than 

0.00001 

 Obtain the error signal e(n) 

 Obtain the optimal learning rate (weights) 

 Print results 

Stop 
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𝜇 is the adaptation step size, and 𝑢∗(𝑛) is the 
complex conjugate of the vector of buffered input 
samples at step n. 

The sign least mean square (SLMS) model 
used are of three categories namely: Sign-Data Least 
Mean Square Model (SDLMS), sign-sign Least Mean 
Square (SSLMS) and  Sign-Error Least Mean Square 
(SELSM) . 

In the Sign-Data Least Mean Square (SD LMS)  
Model [35, 36],  the filter weights are obtained using the 
LMS models, but each time the weights were updated, 
it replaces each sample of the input vector u(n) in 
equation 17 with +1 when the sample is positive, -1 
when the sample is negative and zero when it is zero. 

In the sign-sign Least Mean Square (SSLMS) 
Model [37,  38],  the filter weights were obtained using 
the LMS models, but each time the weights were 
updated, it replaces each sample of the input vector 
u(n) in equation 17 with +1 when the sample is positive, 
-1 when the sample is negative and zero when it is 

zero. It also replaces e(n) with +1 when the sample is 
positive, -1 when the sample is negative and zero when 
it is zero. 

In the Sign-Error Least Mean Square (SELSM) 
Model [39]  the filter weights are obtained using the 
LMS models, but each time the weights were updated, 
it replaces each sample of the input vector e(n) in 
equation 17 with +1 when the sample is positive, -1 
when the sample is negative and zero when it is zero. 

III.  METHODOLOGY 

A. Proposed Modified Least Mean Square Model 

The proposed least mean square model was 
done by combining the iteration conditions and 
stopping criterions of both least mean square model 
and normalized least mean square model shown from 
equation 18 to equation 22.  The flowchart for the 
proposed modified least mean square adaptive filter is 
shown in Figure 4. 
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Figure 4: Flowchart for the proposed LMS model 

 
 

∆𝑊(𝑛) =  −𝜇 (
𝛿𝐸(𝑒2(𝑛))

𝑑𝑊(𝑛)
)                  

(18) 
Thus: 

𝑊(𝑛 + 1) =  𝑊(𝑛) − 𝜇 (
𝛿𝐸(𝑒2(𝑛))

𝑑𝑊(𝑛)
)   (19) 

𝑋(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), … , 𝑋(𝑛 − 𝐿 + 1)]𝑇    (20) 

𝑒(𝑛) =  𝑑(𝑛) − ℎ𝐻(𝑛)𝑥(𝑛)     (21) 

ℎ(𝑛 + 1) = ℎ(𝑛) + (
𝜇𝑒∗(𝑛)𝑥(𝑛)

𝑋𝐻(𝑛)𝑥(𝑛)
)     (22) 

where: ∆𝑊(𝑛) is an incrementing factor, n is 
the time, W(n) is the total weights to be adjusted at 
time n, X(n) is the total input signal at time n, w(n) and 
x(n) are the weights and input signals of each 
adaptive filter coefficients respectively, L is the filter 
order, e(n) is the error of the current sample n, d(n) is 

YES 

NO 

Start 

Input the input signal and the white 

Gaussian noise 

Determine the desired signal via combining the input 

signal and the noise 

Determine the initial impulse signal h(n), the initial weights and 

obtain the error signal e(n) 

If h(n) –h(n+1) is less than 0.00001and 

W(n) = W(n+1) 

 Obtain the error signal e(n) 

 Obtain the optimal learning rate and the optimal weights 

 Print results 

Stop 
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the desired signal of the current sample n, h(n) is the 

impulse response and 𝜇  is the learning rate of the 
system.  

B.  Performance Measures for the Adaptive Filter 

Models 

Root mean Square Error (RMSE) and Sum of  
Square Error (SSE) of the desired signal and the 
output signal were determined with the models in 
equation (23) and equation (24) respectively. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑜𝑢𝑡𝑝𝑢𝑡)2   (23) 

𝑆𝑆𝐸 =  ∑(𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑜𝑢𝑡𝑝𝑢𝑡)2        (24) 
Where n is the number of iterations. 
Also, R-square values was computed. The 

parameters were used to evaluate the performance of 
the various adaptive filter model presented in this 
paper. 

IV  SIMULATION AND RESULTS 
The input signal (or desired signal) in Figure 5 

is from Hallelujah chorus by Handel whereas 
Gaussian noise was used as noise signal. The input 
signal from Hallelujah chorus by Handel was recorded  
and uploaded in Matlab 7.9 and mixed with the white 
Gaussian noise. The mixture of the input signal and 
noise signal was subjected to filtering using five least 
square algorithms namely;  LMS, NLMS, SSLMS, 
SDLMS and SELMS models. Also the proposed 
modified LMS algorithm was used to cancel out noise 
from the desired signal ( recorded Handel’s Hallelujah 
chorus). Performance measures were used to 
ascertain the best adaptive filter model that cancelled 
out noise from the desired signal.    

Up to 70114 sets of data were generated 
during the simulation of the song with the noise. The 
error between the input signal to the adaptive filter 
(speech signal with noise) and the output of the 
adaptive filter is obtained and plotted for each of the 
algorithms. In order to compare the performance and 
the speed of convergence of the algorithms the signal 
value versus the number of iterations graph is plotted 
and the following performance parameters are also 
computed for each algorithm; R-square values, sum of 
square error and root mean square error. The plot 
shows the number of iterations it takes for the mean 
square error to attain the recorded performance 
parameters values for each of the algorithms.  

 

Figure 5: Signal Value versus Time Index or Iteration 
For The Desired Signal  

 
After filtering with LMS model, the plot of the 

output signal value versus time index or iteration is 
given in figure 6 while the plot of the error signal value 
versus time index for the LMS model is given  in figure 
7.  Figure 8 shows the plot of the combination of 
desired signal, output signal and error signal  for the  
LMS model. 

 
Figure 6: Output Signal Value versus Time Index or 

Iteration For The Output signal from LMS model 
Figure 7 and figure 8 show that for the LMS 

model the error signal (the red line) tends toward zero 
after some iteration which affirms the postulates that 
when the desired signal is subtracted from the output 
signal, the error will be zero. Particularly, the more 
error tends to zero, the more the noise is cancelled by 
the LMS model.  When the filtering process occurs, 
the coefficients of the adaptive filter were adjusted by 
the LMS model. The actual and the estimated 
coefficients of the LMS filter are shown in Figure 9. It 
can be seen from Figure 9 that there is no much 
deviation of the estimated coefficients from the actual 
coefficients (the actual coefficients are the coefficients 
of the adaptive filter originally present before tuning, 
while the estimated coefficients are the final 
coefficients obtained after simulation by the LMS 
model). 

 
Figure 7: Error Signal Value versus Time Index or 
Iteration For The Output signal from LMS model 
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Figure 8: Plot showing the combination of desired 
signal, output signal and error signal for the  LMS 

model 

 
Figure 9: Plot showing the adaptive filter coefficient 

output for the  LMS model 
Similarly, for the Normalized Least Mean 

Square (NLMS) model, the plot of the output signal, 
the error signal , the combination of desired signal, 
output signal and error signal  and the coefficient 
output are given in figure 10  ,  figure 11 , figure 12 
and figure 13 respectively.  

 
Figure 10: Output Signal Value versus Time 

Index or Iteration For The Output signal from NLMS 
model 

 
Figure 11: Error Signal Value versus Time 

Index or Iteration For The Output signal from NLMS 
model 

 
Figure 12: Plot showing the combination of desired 
signal, output signal and error signal for the  NLMS 

model 
 

Although the results of the LSM and that of 
the NLSM look alike, it will be observed from the error 
signal plots that the error plot of  figure 11 for the 
NLSM algorithm converged (tends towards zero ) 
faster than that ( figure 7) of the LMS algorithm.  

Again, similar graph plots are obtained for the 
other three models, namely; SSLMS, SDLMS and 
SELMS models. However, in view of the close 
similarities among their graph plots only the plots for 
the Sign-Sign Least Mean Square (SSLMS) model are 
given. Accordingly, for the SSLMS model, the plot of 
the output signal, the error signal , the combination of 
desired signal, output signal and error signal  and the 
coefficient output are given in figure 14  ,  figure 15 , 
figure 16 and figure 17 respectively.  
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Figure 14: Output Signal Value versus Time Index or 
Iteration For The Output signal from SSLMS model 

 
Figure 15: Error Signal Value versus Time Index or 
Iteration For The Output signal from SSLMS model 

 Figure 16: Plot showing the combination of desired 
signal, output signal and error signal for the  SSLMS 

model 

  
Figure 17: Plot showing the adaptive filter coefficient 

output for the  SSLMS model 
 

The error signal plot (figure 16) shows that the 
error signal in the SSLMS model is  much when 
compared with those of the LMS and NLMS models. 
Also, in the SSLMS model  plot of figure 17 there is a 
clear difference between the estimated coefficients 
from the actual coefficients unlike those of the LMS 
and NLMS models that is no marked difference 
between the estimated coefficients and the actual 
coefficients.  

Furthermore, for the proposed modified LMS 
Model, the plot of the output signal, the error signal , 
the combination of desired signal, output signal and 
error signal  and the coefficient output are given in 
figure 18  ,  figure 19 , figure 20 and figure 21 
respectively.  

 
Figure 18: Output Signal Value versus Time Index or 

Iteration For The Output signal from the proposed 
modified LMS model 
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Figure 19: Error Signal Value versus Time Index or 
Iteration For The Output signal from the proposed 

modified LMS  model 

  
Figure 21: Plot showing the combination of desired 

signal, output signal and error signal for the  proposed 
modified LMS  model 

 

 Figure 21: Plot showing the adaptive filter coefficient 
output for the proposed modified LMS  model 

Generally,  the results for the proposed 
modified LMS  model  are similar to that of the LSM 
and NLSM model, however,  the subtle differences in 

their performance and obvious from the R-square 
values, sum of square error and root mean square 
error of the different models , as shown in Table 1. 
 Table 1: Summary of R-square values, sum of square 

error and root mean square error of the 
    different models  

S/N MODELS 
R-

SQUARE 
VALUES 

SUM OF 
SQUARE 
ERROR 

ROOT 
MEAN 

SQUARE 
ERROR 

1 LMS 0.9889 29.9311 0.2020 

2 NLMS 0.9981 5.0112 0.0083 

3 SDLMS 0.9888 30.1627 0.2053 

4 SELMS 0.9978 5.8741 0.0202 

5 SSLMS 0.9630 99.9945 0.0370 

6 

Proposed 
Modified   

LMS 
0.9983 5.0011 0.0081 

 
From the results in Table 1, the proposed 

modified  LMS model is the best model for cancelling 
noise since it has  the highest R-square value of 
0.9983, the lowest SSE value of 5.0011 and the 
lowest RMSE value of 0.0081. The next  model in 
performance rating is the NLMS with R-square value 
of 09981, SSE value of 5.0112 and RMSE value of 
0.0083.  On the other hand, the sign-sign least mean 
square (SSLMS ) model has the highest sum of 
square error value of 99.9945. This implies that it is 
inefficient to use SSLMS to cancel noise in the given 
case considered in this paper.  

Finally, the model with the highest R-square 
value was the proposed LMS model, followed by 
normalized least mean square. This makes it the most 
efficient models for cancelling out noise in the 
Hallelujah chorus that was recorded. Since both the 
proposed modified LMS model and the NLMS model 
have RMSE of the acceptable range of 0 to10%, both 
can be used to eliminate noise in the song. 

V.  CONCLUSION 
Five adaptive filter models namely; Least 

mean square (LMS), normalized least mean square  
(NLMS), Sign-data least mean square  (SDLMS), 
sign-error least mean square  (SELMS) and sign-sign 
least mean square  (SSLMS) models were studied 
and a modified LMS algorithm was developed. The six 
adaptive filter models were then used to cancel out 
the white Gaussian interference in the recording of 
Handel’s Hallelujah chorus. The simulations were 
conducted using Mathlab. The results showed that the 
sign-sign least mean square model had the highest 
sum of square error and  root mean square error and 
the lowest R-Square value which made it the least 
preferred model in the adaptive filtering of the noise in 
Handel’s Hallelujah chorus. The newly developed 
modified LMS adaptive filter algorithm is the best 
algorithm among the six adaptive filter algorithms 
studied; it had the lowest sum of square error and  
root mean square error and the highest  R-Square 
value. In any case, both the NLMS and the newly 
developed modified LMS adaptive filter algorithm have 
acceptable root mean square error values; hence both 
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algorithms can be used to eliminate noise in the 
Handel’s Hallelujah chorus. 
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