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Abstract—The use of chemical vapor deposition 

technique has increased in the last five years, 

mainly due to the thin film production, such as 

graphene sheets for photovoltaic applications, 

carbon nanotubes films as catalysts, and 

semiconductors films as electrodes in electronic 

devices. If turbulence is increased in those 

processes, also mixing of solution and growth 

rate of nanotubes are increased. Then,   the 

incidence angle of doping species influences the 

laminar flow of reaction gas, and therefore, the 

amount of carbon nanotubes obtained in the 

quantification. Many studies choose 

Computational Fluid Dynamics (CFD) models to 

obtain the best operating conditions for physical 

systems and design evaluations. Thus, we 

developed a Computational Fluid Dynamics 

model of a Chemical Vapor Deposition type 

reactor, where flows were simulated for different 

species of gases, to assess the ideal conditions 

to improve the production process of carbon 

nanotubes. We used Bayesian Network 

probability model and determined the inference 

of eddy turbulence over the flow yield. We found 

that flow systems increase directly production 

and metal attachment to the nanotubes network 

with an insertion at 90°, because gas presence in 

the reaction zone is favored. The model allows us 

to quantify the eddy viscosity and its probability 

along the reactor to improve further designs. 

Keywords—Bayesian networks, CFD, carbon 
nanotubes, CVD, eddy viscosity.  

I. INTRODUCTION  

Chemical Vapor Deposition (CVD) is a versatile 

process in which the gas phase molecules 

decompose the reactive species for particle growth. 

In this method, a substrate that acts as a catalyst (Fe, 

Co, Ni) produces a thin film of 1 to 50 nm thick, which 

is heated in a furnace with inert helium at a low 

pressure. When temperature reaches 600 ° C, with 

the slow addition of methane, acetylene, or benzene, 

carbon atoms are released and could recombine as 

nanotubes [3].  

The metal is bonded separately due to the high 

temperatures in CVD process; those nanoparticles 

serve as growth centers, forming the basis of 

nanotubes. Therefore, the particle size defines the 

diameter of the nanotube obtained [7,14,11]. The 

CVD process could be simulated with the aim to find 

the best condition to obtain the nanoparticles. Using 

a Computational Fluid Dynamics (CFD) model, Kim 

et al. [12] proved that the structural formation of 

carbon nanotubes vertically (CNT) in forest array, is 

primarily affected by the gas flow that leads to 

direction changes in growth during the CVD process 

[13].  

Many studies have been conducted using CFD model 

to determine the best operational conditions of these 

systems. In consequence, it has increased systems 

performance, and predicted their results. Choi et al.  

[4] developed a multiscale computational framework, 

with a couple of continuum model simulations and 

molecular dynamics method for manufacturing 

nanotubes materials, in which validation was 

performed for the plasma - assisted growth. Ismail et 
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al. [10] investigated thermal conditions of the fluid 

aligned and staggered multi-walled CNT (MWCNT ) 

using a numerical method based on micro pin fins 

having 650 microns long hydraulic diameter of 130 

microns. Heat transfer coefficients were obtained for 

effective heat fluxes ranging from 50 to 130 W and 

Reynolds numbers 14-160.  

A research review was reported by Raji and Sobhan 

[17] about the simulation of nucleation processes and 

growth of carbon nanotubes, using different modeling 

techniques. Modeling methods include CFD 

conventional approaches and techniques of discrete 

computer. Nano fluidic technology is advancing 

rapidly and with it, series of new technical 

opportunities are emerging. However, the prediction 

rate and heat transfer in the low mass of nano-scale 

systems presents a major obstacle to its design. The 

existence of no continuing effects, such as molecular 

stratification and sliding speed near the liquid-solid 

interfaces, apparently excludes continuous efficient 

CFD [9].  

Van Santen et al. [20] determined, with a 2D 

CFD model, that the turbulence increase mixing and 

growth rate of nanotubes, then the incidence angle of 

doping species influences the laminar flow of reaction 

gas, and therefore, the amount of carbon nanotubes 

obtained in the quantification. Although numerous 

studies had been conducted with reactors using CFD 

as a tool to calculate realistic approaches, 

nevertheless, there is not yet an optimal design for a 

CVD type reactor. The objective of this study is to 

develop an efficient CVD reactor design for the 

production of carbon nanotubes using a CFD model 

changing the entries of fluids in 90° from the outlet 

direction.    

II. CFD THEORY 

CFD method is based on the fluid dynamics 

equations (continuity, momentum, and energy). The 

equations obtained directly from the volume or fixed 

element in space are known as "conservative form”. 

While the equations obtained from the volume and 

move with the fluid element are called "non-

conservative form”.  

The substantial derivative is physically the 

exchange rate of any substance that moves with a 

fluid element. It consists of two parts; the first part is 

called the local derivative, which is physically the rate 

of change overtime in a fixed point. The second part 

is called the convective derivative, which is physically 

the exchange rate due to movement of the fluid from 

one point to another in the field of fluid, where the 

fluid properties are spatially different. The resulting 

material can be applied to any field variable fluid, for 

example: pressure (p) or temperature (T) [1]. 
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3) Components in x, y and z 

4) Energy Equation (a non-conservative) 

The equations form a coupled system of 

partial differential nonlinear equations. So far, no 

analytical solution has been found. It is commonly 

assumed that the fluid is an ideal gas where the 

intermolecular forces can be neglected. For an ideal 

gas equation of state: 

p = ρ RT    (5) 

Where, R is the specific gas constant. For a 

calorically ideal gas, we have: 

e = CvT    (6) 

Where, Cv is the specific heat at constant 

volume [5]. 

III.  MATERIALS AND METHODS 

The work was done in CINVESTAV - Queretaro, 

using a CVD reactor. The reaction tube is made of 

stainless steel - AISI 310 schedules 10, with an 

external diameter of 21.2 cm and length of 1.8 m, as 

shown in Figure 1. 

 

Figure 1. CVD – Reactor. 

 

3.1 Experimental measurements 

 

According with the theoretical work mentioned above, 

we conducted three different experiments in order to 

show how the MWCNTs growth in the CVD reactor 

with the same conditions. 300 milligram of catalyst 

mixture powder (FeCo) was dispersed inside a small 

316 stainless steel container (4 x 2.5 cm) and this 

container was placed inside the iron tube of the CVD 

reactor. The stainless steel container were place 

approximately at 25 cm from the top of the tube for 

the first experiment, 60 cm from the top of the tube 

for the second experiment and 97 cm from the top of 

the tube for the third experiment as show in the next 

Figure 2.  

 

 
 

Figure 2.Schematic distribution of the position of the 

stainless steel container for MWCNTs synthesis. 

 

 

3.2 CFD Model 

 

The model was developed by CFD ANSYS 

FLUENT 14.0 software; the simulation was 

performed according to previous references 

[5,16,21,24]. First, the dimensional geometry is 

generated and later proceeds to a tetrahedral 

meshing type with a characteristic meshing angle of 

30° and 20 nodes, as shown in Figure 3. 

Subsequently, the initial and boundary values shown 

in Table 1 were obtained from the standards noted 

patent. 

 

 

 

Figure 3.CVD – Reactor meshing. 
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Table 1. CFD Model configuration 

 DESCRIPTION 
VALUE 

Solver 3D Simulation 
 

Condition time Transcendent 
 

Viscosity 
model 

k-epsilon (2 
eq.), realizable, 
viscous heating 

 

Energy 
equation 

Active 
 

Species 

Species 
transport: 
Nitrogen, 
Hydrogen and 
Acetylene 

 

Dominion 
entrance 

Velocity intlet 1 
0.00014 m/s 

Pressure intlet 
1 

275790 Pa 

Velocity intlet 2 
0.00024 m/s 

Pressure intlet 
2 

275790 Pa 

Dominion exit 
Pressure outlet 

-53328.0 Pa 

Temperature 
outlet 

917.15 K 

Temperature 
Physical 
mixtures 

300 K 
 

Properties Nitrogen 
Hydrogen Acetylene 

Enthalpy 
J/Glom 

0.0 
0.0 227.48 

Entropy 
J/Glom 

191.5 
130.7 200.9 

Temperature K 298.15  
298.15  298.15  

Energy 100 
  

 

The physical-thermal characterization were 

consisted in a temperature sampling in 86 points 

distributed homogeneously of the CVD reactor, in 

which 14 points were found in the reaction tube, and 

72 points in the heating body. The measurement was 

made by temperature and speeds flow sensors. 

The results of solving equations 

corresponded to the value of the field variables at 

each grid point. This amount of numbers should be 

reduced to the basics to be handled with ease and 

get significant results in the calculation. An important 

part of this step is the graphical representation of the 

variables that govern the flow, to have a quick view of 

the results obtained. Here is also included the 

comparison of results obtained: 

 

a) Using CFD analysis. 

b) With other experimental results. 

c) With results from other scientific 

publications. 

d) Against results obtained with Bayesian 

networks. 

 

3.3 Bayesian Network analysis method 

 

Expected probability distribution of output variables 

(eq. 7) is determined by the algorithm of solution of 

the BN. This technique has been used to identify 

relationships between seemingly indeterminate 

variables, describing, and quantifying these 

relationships even with a set of missing data [8,19, 

22].  

 

 

P(x1,…,xn) = P(xi |parents (xi)) 

  (7) 

The result of this calculation (eq. 8) depends on the 

probability distribution of the input variables. BN is a 

joint probabilities distribution of a collection of 

discrete random variables [6,23,24]. 

 

 

P(cj | xi) = P(xi | cj ) P(cj ) / k P(xi | ck ) P(ck )  

    (8) 

 

The aim of BN structure learning is to find a 

configuration that best describes the observed data. 

Statistical machine learning methods had been 

applied in the Bayesian statistics; however, machine 

learning could employ a variety of classification 

techniques to produce models other than BN. The 

number of possible structures of direct acyclic graph 

for searching is exponential in the number of 

variables in the domain (eq.3). Machine learning 

could be seen as an attempt to automate some parts 

of the scientific method by mathematical methods [2]. 

  

f (n) =(-1) I +1Cin 2i(n-i) f(n-i )  

  (9) 

http://www.imjst.org/


International Multilingual Journal of Science and Technology (IMJST) 

ISSN: 2528-9810 

Vol. 2 Issue 1, January - 2017 

www.imjst.org 

IMJSTP29120070 190 

The supervised learning algorithm produces 

a function that establishes a correspondence 

between inputs and desired outputs of the system 

using a node class. On the other hand, all the 

modeling process is carried out on a set of examples 

formed just by logging into the system in the 

unsupervised learning. The simple Bayesian 

classifier (Naive Bayes classifier, NBC) assumes that 

attributes are independent of each other given the 

class and the probability. Each attribute given the 

class node could be obtained by the product of 

individual conditional probabilities.. 

When the model has a structure determinate 

and the user have complete and sufficient data for all 

variables, is relatively easy to obtain parameters. The 

most common method is called maximum likelihood 

estimator under which the probabilities based on the 

frequency data are estimated. 

 

 

 IV  RESULTS AND DISCUSSION 

According to laboratory work, the first observation 

during the experiment showed a significant change in 

the growth of carbon nanotubes depending on the 

position in which the containers are located. This 

change is directly reflected in the percentage of 

production of carbon nanotubes due to the flow of 

precursor gases. The container located in position (1) 

produced 157% of MWCNTs, container located in 

position (2) produce 180% of MWCNTs which means 

the reaction time of the precursor gas in this part of 

the reactor is considerable more efficient due to the 

turbulent flow achieved. The position (3) produce 

32% of MWCNTs less than the others experiments, 

this could be related to the vacuum pump which 

produce a laminar flow and the reaction time in this 

position is less than the other positions .  

In addition, it was found that flow systems 

directly increased the nanotubes production, and the 

amount of metal attached to the network of the 

nanotubes, resulting in a greater measure and equal 

quality insertion at 180° observed flow in the system, 

and at 90 °, the gas residence in the reaction zone 

was favored. 

 CFD simulation models exhibit greater 

temperature rise when the gas flow was introduced at 

90°, indicating that the process is more efficient. 

Other simulation model reported by references 

[15,18],  a dynamic CFD model over time to 

determine the fluid flow in the first few seconds was 

performed in the present work, as shown in Figure 4. 

 

Figure 4.Temperature in a CVD – Reactor: a) at 180° 
and b) at 90°. 

 

Figure 5. Fluid flow in a CVD – Reactor: a) at 180° 
and b) at 90°. 

After 30 seconds into the CVD process, the 

fluid traveled almost the entire reactor when it was 

added at 90°, moreover, it was observed that by 

adding it to 180° the fluid does not reach into the 

reaction zone, because it has a laminar flow (Fig. 5). 

 

 

Figure 6.Fuid flow inlet CVD – Reactor at 90°. 
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Figure 6 showed fluid inlet in the process, 

where we appreciate the direction of flow turbulently. 

A turbulent flow has characteristics in many different 

length scales, all of which interact. In this model, 

additional turbulence tensions occur by increasing 

the molecular viscosity, with an eddy viscosity (Figure 

6). This information allowed to quantify the eddy 

viscosity along the reactor for subsequent designs. 

 

 

Figure 6.Fuid flow inlet CVD – Reactor at 90°. 

This effect could be seen primarily by the 

bulk amount of carbon nanotubes obtained in the 

system, based on 0.5 g of FeCo. We proceeded to 

make the bulk amount of nanotubes, obtained on 

completion of the reaction and the amount after 

purification process, and the atomic percentage of 

manganese in the samples obtained by Energy 

Dispersive Spectroscopy analysis (EDS), how is 

showed in Table 2: 

 

Table 2.Comparative performance – fluid flow.  

Inlet flow MWNT´S-Mn 
without  purify 

(gr) 

MWNT´S-Mn 
purify 
(gr) 

Atomic 
percent 

(%) 

180° 1.345 0.824 0.87 ± 0.05 
90° 1.875 1.002 1.25 ± 0.05 

 

The classic model of naïve Bayes was built 

with all predictor variables, i.e., it was assumed that 

these variables are independent of the class. With 

these results, an analysis was conducted using the 

software Elvira to determine the BN model structure. 

This process was marked as non-supervised 

classification method.  

Figure 7 shows the result of unsupervised clustering 

or classification, where the class node establishes a 

bridge between the variables relating them is 

according to Bayes' theorem. The variable z, which 

corresponds to the length of the reactor, was the only 

replay showing a direct relationship with the node 

class. Moreover, the variable y, which corresponds to 

the height of the reactor, was inversely proportional 

to the node class. The turbulence (eddy) had an 

indeterminate relationship. 

 

 

Figure 7.Supervised classifier. 

According to Bayesian analysis, the greater 

turbulence was equal to 0.00145 Pa*s and was 

presented between  0 - 0.768 m length with 0.95% of 

conditional probability, and between -0.06 - 0.01 m 

the length axis, with 0.87% of conditional probability.                            

 

V. CONCLUSIONS 

 

From analysis using CFD, we could understand the 

physical effect caused by the change in the angle of 

entry of the reaction gases and obtaining data speed 

misting system. These data allow us to realize that 

the residence time of the dopant gas should be 

higher. This system is ratified by making a 

comparison with the product output between the two 

angles, where we were noted that the angle of 90 ° 

provides greater amount of manganese in the walls 

of the multiwall carbon nanotube, that widely favors 

the catalytic function to carry out the process for 

obtaining synthetic diesel; because with larger 

amount of catalytic metal available the reaction is 

favored. The maximum turbulence (equal to 0.00145 

Pa*s) was presented between 0 – 0.768 m with 0.95 

% of conditional probability. Bayesian Network 

method allowed us to determine relationships 

between variables considered independent with 

classic statistical methods and calculate their 

inferences. 
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