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Abstract—The single-band Hubbard model was 

developed to study the repositioning of electrons 

as they hop from one lattice point to another at a 

constant lattice separation distance within the 

crystal lattice. The single-band Hubbard model is 

only linearly dependent on lattice separations. 

However, it does not consider the lattice gradient 

encountered by interacting electrons as they hop 

from one lattice point to another. In this paper, 

the behaviour of two interacting electrons on a 

two dimensional (2D) N X N cluster was studied 

using two types of Hamiltonian model. The 

Hamiltonians are the single-band Hubbard model 

and the gradient Hamiltonian model. 

Consequently, the gradient Hamiltonian model 

was developed to solve the associated defects 

pose by the limitations of the single-band 

Hubbard model.  The results of the ground-state 

energies produced by the gradient Hamiltonian 

model are more favourable when compared to 

those of the single-band Hubbard model. It is 

evidently shown in this study, that the repulsive 

Coulomb interaction U which in part leads to the 

strong electronic correlations, would indicate that 

the two electron system prefer not to condense 

into s -wave superconducting singlet state ( 0s

), at high positive values of the interaction 

strength. This study also reveal that when the 

Coulomb interaction is zero, 0U , that is, for free 

electron system, the variational parameters which 

describe the probability distribution of the lattice 

electron is not the same. This is a clear indication 

of the presence of residual potential field even in 

the absence of Coulomb attraction.  

Keywords—Correlation time, Gradient 
Hamiltonian model, Ground-state energy, 
Hubbard model and Interacting electrons. 

I.    INTRODUCTION. 
Superconductivity is a phenomenon occurring in 

certain materials at extremely low temperatures 
(~− 200℃), characterized by exactly zero electrical 

resistance and the exclusion of the interior magnetic 
field (the Meissner effect). The electrical resistivity of 
a metallic conductor decreases gradually as the 
temperature is lowered. However, in ordinary 
conductors such as copper and silver, impurities and 
other defects impose a lower limit. Even near 
absolute zero a real sample of copper shows a non-
zero resistance [1]. 

The resistance of a superconductor, on the other 
hand, drops abruptly to zero when the material is 
cooled below its critical temperature, typically 20 
kelvin or less. An electrical current flowing in a loop of 
superconducting wire will persist indefinitely with no 
power source. Like ferromagnetism and atomic 
spectral lines, superconductivity is a quantum 
mechanical phenomenon. It cannot be understood 
simply as the idealization of perfect conductivity in 
classical physics. 
    There has been dramatic progress in the 
development of electron correlation techniques for 
the accurate treatment of the structures and energies 
of molecules. A particle like an electron, that has 
charge and spin always feels the presence of a 
similar particle nearby because of the Coulomb and 
spin interactions between them. So long as these 
interactions are taken into account in a realistic 
model, the motion of each electron is said to be 
correlated. The physical properties of several 
materials cannot be described in terms of any simple 
independent electron picture; rather the electrons 
behave cooperatively in a correlated manner [2]. The 
interaction between these particles depends then in 
some way on their relative positions and velocities. 
We assume for the sake of simplicity that their 
interaction does not depend on their spins.  
  The single band Hubbard model [3] is the 
simplest Hamiltonian containing the essence of 
strong correlation. Notwithstanding its apparent 
simplicity, our understanding of the physics of the 
Hubbard model is still limited. In fact, although its 
thermodynamics was clarified by many authors [4] 
various important quantities such as momentum 
distribution and correlation functions, which require 
an explicit form of the wave function, have not been 
properly explored [5]  

The single-band Hubbard model (HM) is 
linearly dependent only on lattice separations. 
However, it does not consider the lattice gradient 
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encountered by interacting electrons as they hop 
from one lattice point to another. The linear 
dependence of the Hubbard model only on the lattice 
separations would certainly not provide a true 
comprehensive quantum picture of the interplay 
between the two interacting electrons. It is clear that 
one of the major consequences of the HM is to 
redistribute the electrons along the lattice sites when 
agitated. However, we have in this study, extended 
the Hubbard model by including gradient parameters 
in order to solve the associated defects pose by the 
limitations of the single-band HM.  

Electron correlation plays an important role in 
describing the electronic structure and properties of 
molecular systems.  Dispersion forces are also due to 
electron correlation. The theoretical description of 
strongly interacting electrons poses a difficult 
problem. Exact solutions of specific models usually 
are impossible, except for certain one-dimensional 
models. Fortunately, such exact solutions are rarely 
required when comparing with experiment [6].  
  Most measurements, only probe correlations 
on energy scales small compared to the Fermi 
energy so that only the low – energy sector of a given 
model is of importance. Moreover, only at low 
energies can we hope to excite only a few degrees of 
freedom, for which a meaningful comparison to 
theoretical predictions can be attempted [7].   

One of the first steps in most theoretical 
approaches to the electronic structure of molecules is 
the use of mean – field models or orbital models. 
Typically, an orbital model such as Hartree – Fock 
self – consistent – field theory provides an excellent 
starting point which accounts for the bulk ( 99 %) of 

the total energy of the molecule [8].  
However, the component of the energy left 

out in such a model, which results from the neglect of 
instantaneous interactions (correlations) between 
electrons, is crucial for the description of chemical 
bond formation. The term “electron correlation energy 
“ is usually defined as the difference between the 
exact non-relativistic energy of the system and the 
Hartree – Fock (HF) energy. Electron correlation is 
critical for the accurate and quantitative evaluation of 
molecular energies [9].    

Electron correlation effects, as defined 
above, are clearly not directly observable. Correlation 
is not a perturbation that can be turned on or off to 
have any physical consequences. Rather, it is a 
measure of the errors that are inherent in HF theory 
or orbital models. This may lead to some ambiguities. 
While HF is well – defined and unique for closed – 

shell molecules, several versions of HF theory are 
used for open-shell molecules [10].  

In probability theory and statistics, 
correlation, also called correlation coefficient, 
indicates the strength and direction of a linear 
relationship between two random variables. In 
general statistical usage, correlation or co-relation 
refers to the departure of two variables from 
independence, although correlation does not imply 
causation [11]. 
 

Interacting electrons are key ingredients for 
understanding the properties of various classes of 
materials, ranging from the energetically most 
favourable shape of small molecules to the magnetic 
and superconductivity instabilities of lattice electron 
systems, such as high-Tc superconductors and heavy 
fermions compounds [12]. 

The essence of this work has been published 
earlier by us when N = 9 [13]. In this present work 
however, the study is widened further when N = 3, 5, 
7 and 11. 

The organization of this paper is as follows. 
In section 2 we provide the method of this study by 
giving a brief description of the single - band Hubbard 
Hamiltonian and the trial wavefunction to be utilized. 
We also present in this section an analytical solution 
for the two particles interaction in a 7X7 cluster of the 
square lattice. In section 3 we present numerical 
results. The result emanating from this study is 
discussed in section 4. This paper is finally brought to 
an end with concluding remarks in section 5. A brief 
summary of the various electronic states available to 
two electrons interactions on a N X N cluster of the 
square lattice is presented in the appendix and this is 
immediately followed by list of references. 
 
A. Research Methodology. 

In this study, we applied the gradient 
Hamiltonian model on the correlated trigonometric 
trial wave-function. The ground-state energies of the 
two interacting electrons which is the result of the 
action of the gradient Hamiltonian model on the 
correlated trigonometric trial wave-function are thus 
studied by means of variational technique.  

II. MATHEMATICAL THEORY. 
A. The single-band Hubbard Hamiltonian 
(HM).  

The single-band Hubbard Hamiltonian (HM) 
[3] reads;

 

                     

 


  
i

i
i

ij

ji nnUchCCtH


 ..                                              (2.1) 

where ji,  denotes nearest-neighbour (NN) sites, 

  ji CC
 is the creation (annihilation) operator with 

spin   or   at site i , and  iii CCn   is usually 

known to be the occupation number operator, ..ch (

 ij CC


) is the hermitian conjugate . The transfer 

integral 
ijt  is written as ttij  , which means that all 

hopping processes have the same probability. The 
parameter U is the on-site Coulomb interaction. It is 

worth mentioning that in principle, the parameter U is 

positive because it is a direct Coulomb integral. 
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B. The gradient Hamiltonian model (GHM).  

The single band Hubbard model (HM) has 
some limitations as it is linearly dependent only on 
lattice separations. It does not consider the lattice 
gradient encountered by interacting electrons as they 
hop from one lattice point to another. The linear 
dependence of the Hubbard model only on lattice 
separations would certainly not provide a thorough 
understanding of the interplay between interacting 

electrons. Consequently, we have in this work, 
extended the single band Hubbard model by 
introducing gradient displacement parameters. We 
hope that the inclusion of the gradient displacement 
parameters will help to resolve the associated defects 
pose by the limitations of the single HM when applied 
in the determination of some quantum quantities. The 
gradient Hamiltonian model read as follows: 
 

          

 


  
i

i
i

ij

ji nnUchCCtH


 ..   
 ji

l

dt tan                                (2.2)                                                        

Now, 
d

ijt =
dt is the diagonal kinetic hopping term or 

transfer integral between two lattice sites, ltan is the 

angle between any diagonal lattice and l represent 

the diagonal lattice separations while the other 
symbols retain their usual meaning. 

 
C. The Correlated Variational Approach 
(CVA).  

The correlated variational approach 
established by [14] is of the form

 

                 

                    
  iiX i

i

,  





ji
ji

jijiX ,,

                                  

(2.3) 

where  ,...,2,1,0iX i  are variational parameters 

and  ji ,  is the eigen state of a given electronic 

state, l  is the lattice separation. However, because 

of the symmetry property of (2.3) we can recast it as 
follows. 

   
llX

l

     (2.4) 

D. The correlated trigonometric trial wave 
function. 

The correlated trigonometric trial wave 
function we develop for the present study is given by 
the equation  

         
  iiX i

i

,  





ji
ji

jijiX ,,

 

+ 

                                                                l tan   





ji
ji

jijiX ,,

               

(2.5) 

Where  is a statistical factor that normalizes the 

kinetic behaviour of the diagonal hopping electrons 
with respect to the entire lattice sites. It is the ratio of 
the number of diagonal separation length to the total 
number of lattice sites. Generally, (see appendix) the 
statistical factor for various 2D N X N lattices are as 
follows: for 3 X 3 ,  = (1/9) = 0.1111 ; 5 X 5

 
, = 

(4/25) = 0.16; 7 X 7, = (7/49) = 0.1428; 9 X 9 , = 

(11/81) = 0.1358 and finally 11 X 11,  = (16/121) = 

0.1322. Also, ltan  is the angle between any 

diagonal lattice, l represent the diagonal lattice 

separations while the other symbols retain their usual 
meaning according to (2.3). Also, because of the 
symmetry property of (2.3) we can recast it as 
follows. 

                                  
llX

l

   + lllX
l

  tan                                            (2.6) 

In this current study the complete details of 
the basis set of the two dimensional (2D) N X N 
lattices can be found in [15] and [16]. However, 
because of the complexity of the lattice basis set we 
are only going to enumerate the relevant information 
that is suitable to our study as presented in the tables 
in the appendix. 
E. Method of determining the lattice 

separations for two dimensional (2D) N X 
N   square lattices. 

Consider the coordinates of a 2D N X N 
cluster of a square lattice which is represented by

),(
11

yx and ),(
22

yx . Suppose we have two 

electrons interacting in this cluster, one electron is 

located at the first coordinate while the other electron 
is located at the second coordinate. Then we can 
define the diagonal lattice separation by the 

expression 
l

d =    221

2

21 aa yyxx   , also for 

linear lattice separation it is either l = 

aaxx 2,121  and 021  yy  or l =

,2,121 aayy  and 01  xx ), while for the on-

site lattice separation we have that l =

02121  yyxx , then the corresponding 

http://www.imjst.org/


International Multilingual Journal of Science and Technology (IMJST) 

ISSN: 2528-9810 

Vol. 1 Issue 2, July - 2016 

www.imjst.org 

IMJSTP29120050 91 

diagonal lattice separation angle is given by














12

12
tan

xx

yy

l . 

F. Evaluation of the quantum state functions 

 and  H  of the two interacting 

electrons. 

We shall in this work show clearly the 
operation of the gradient Hamiltonian given by (2.2) 
on (2.5) only for the case of 2D 7 X 7 square lattice 
and assume the same procedure for the other 2D N 
X N square lattices. 

There are two basic quantum constraints or 
gauge which must be duly followed in this aspect of 
the work. The constraints are that: 

(i)    the field strength tensor  

      








jiiff

jiiff
ji ji

0

1
               (2.7) 

(ii)   the  Marshal rule for non-conservation of parity 
[17]                        

       
 ijji ,,

             
 (2.8)     

Hence with these two basic constraints we can solve 

for the inner product   of the variational trial 

wave function and the activation of the Gradient 
Hamiltonian model on the trial wave function

 H . 

G.   Determination of  and  H for two 

dimensional (2D) 7 X 7 square lattices. 
Now when the correlated variational trial 

wave-function given by (2.4) is written out in full on 
account of the information enumerated in Tables A.1 
- A.4 we get

 

 = 00 X + 11 X + 22 X + 3X 3 + 4X 4 + 5X 5 + 6X 6 + 7X 7 + 8X 8 + 

          9X 9  + 222 tan X + )tan(tan
2

4

1

44  X 4 + 5X 55tan  + 7X 77tan  +  

                                                   8X 88tan  + 9X 99tan                                         (2.9) 

 =  2

0
49 X +

2

14X +
2

24X +
2

34X +
2

48X +
2

54X +
2

64X +
2

78X +
2

88X +
2

9
4X + 4

2
 2

22

2 tan X + 

 4
2

4

2
X (

1

4

2
tan  +

2

4

2
tan  ) + 5

22

5

2
tan4  X + 8

2
 7

22

7 tan X +8
2

 8

22

8 tan X +4
2


2

9X 9

2
tan  (2.10)

     
 

Note that the product terms in l  is neglected. When 

we carefully use equation (2.2) to act on equation 

(2.9), with the proper application of the information 
provided in Tables A.1 – A.4 we get as follows. 

 

  124231210110 422482  XXXXXXtH 132 X 432 X 632 X

 3424 44  XX  7454 24  XX 452 X 852 X 6636 22  XX  + 762 X 472 X

 877767 224  XXX 584 X 782 X
  882 X +

 
984 X 9989 42  XX  00 XU

 

 22
2

2 tan  Xt
d

 + 4X ( 4

1

4

2
tan  + 4

2

4tan  )+ 55

2

5 tan X + 77

2

7 tan X
                 

                                                                                                   

+ 88

2

8 tan X + 99
2

9 tan X                                                                            (2.11) 

  54634342312110 32163232163216)(49 XXXXXXXXXXXXXXtH  

7432 XX  98877685 32323232 XXXXXXXX 
2

8

2

7

2

6 16168 XXX 2
0

2
9 )4/(416 XtUX 

 

            
  2

32

2

2
tan449  Xt

d
4

2

4X  (
1

4

3
tan  +

2

4

3
tan  ) + 5

32

5 tan4 X + 8 7

32

7 tan X + 

                                    8 8

32

8 tan X  + 4
2

9X  9

3
tan                                                             (2.12) 

Again we should understand that the values of 

ll
  is clearly stated in Tables A.2 - A.4.  

H.  Results of the  and  H for 

other two dimensional (2D) N X N square 
lattices. 

We can now tactically follow the same 
procedure that led to the realization of equations 
(2.10) and (2.12) for the rest of the Two dimensional 
(2D) N X N clusters  whose results are also clearly 
stated below. 
(a)   Two dimensional (2D) 3 X 3 cluster of a      

square lattice 

                   
 2

22
2

22
2

2
1

2
0 tan4  449  XXXX 

 


 
9  2

22
2

2
tan4  X  

                          
(2.13)

                    
 

  
  2110 32169 XXXXtH 

2

0

2

2

2

1 )4/(4168 XtUXX 9  2
32

2
2

tan4  Xt
d

   
     

 
 (2.14)              

            (b)     Two dimensional (2D) 5 X 5 cluster of a square lattice. 
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 2

5
2
4

2
3

2
2

2
1

2
0 4844425 XXXXXX 

                              

 5

22
5

2
4

1
4

22
42

22
2

2
tan4)tan(tan4tan425  XXX   

                    
(2.15) 

    
                                                  

  544342312110 323232163216)(25 XXXXXXXXXXXXtH


2

4

2

3 168 XX
    

 

 
2

0
2
5 )4/(416 XtUX 

 
 5

32
5

2
4

31
4

32
42

32
2

2
tan4)tan(tan4tan425  XXXt

d


            (2.16)          
(c)       Two dimensional (2D) 9 X 9 cluster of a square lattice. 

 =  2

0
81 X +

2

14X +
2

24X +
2

34X +
2

44X +
2

54X +
2

64X +
2

78X +
2

88X +
2

94X +
2

104X +
2

118X +
2

128X +
2

138X +   2

14
4X  

  2
22

2
2

tan481  Xt
d

4
2

4X  (
1

4

2
tan  +

2

4

2
tan  ) + 5

22

5 tan4 X + 8 7

22

7 tan X +  

 8 8

22

8 tan X + 4
2

9X  9

2
tan  + 8 11

22

11 tan X + 8 12

22

12 tan X + 8 13

22

13 tan X + 4
2

14X 14
2tan 

    
(2.17)

      
  

  54634342312110 32163232163216))(81( XXXXXXXXXXXXXXtH 7432 XX

 13912898117871067685 3232323232163232 XXXXXXXXXXXXXXXX  12111110 3232 XXXX

 14131312 3232 XXXX 2
0

2
14

2
13

2
12

2
11

2
10 )4/(4161616168 XtUXXXXX     2

32
2

2
tan481  Xt

d
4

2

4X  (
1

4

3
tan 

+
2

4

3
tan  ) + 5

32

5 tan4 X + 8 7

32

7 tan X + 8 8

32

8 tan X + 4
2

9X      

                9

3
tan  + 8 11

32

11 tan X + 8 12

32

12 tan X + 8 13

32

13 tan X + 4
2

14X 14
3tan                      (2.18) 

(d)      Two dimensional (2D) 11 X 11 cluster of a square lattice. 

 =  2

0
121 X +

2

14X +
2

24X +
2

34X +
2

44X +
2

54X +
2

64X +
2

78X +
2

88X +
2

94X +
2

104X +
2

118X +
2

128X +
2

138X +

  48 8 8 8 4 4 2
20

2
19

2
18

2
17

2
16

2
15

2
14 XXXXXXX    2

22
2

2
tan4121  Xt

d
4

2

4X  (
1

4

2
tan  +

2

4

2
tan  ) + 5

22

5 tan4 X + 8

7

22

7 tan X + 8 8

22

8 tan X + 4
2

9X  9

2
tan  + 8 11

22

11 tan X + 8 12

22

12 tan X + 8 13

22

13 tan X + 4
2

14X 14

2
tan  + 8

16

22

16 tan X + 8 17

22

17 tan X 8 18

22

18 tan X + 8 19

22

19 tan X + 

                                                                                                     4 20

22

20 tan X                (2.19) 

 H   74546343422 3232163232163216121
31110 XXXXXXXXXXXXXXXXt  

 111013912898117871067685 323232323232163232 XXXXXXXXXXXXXXXXXX  

 17121312161112111510 3232323216 XXXXXXXXXX 191418131413 323232 XXXXXX   
 

161532 XX

171632 XX 
2

18

2

17

2

16

2

15201919181817 1616168323232 XXXXXXXXXX 
2

1916X












 2

0
2

20
4

416 X
t

U
X

  2
32

2
2

tan4121  Xt
d

4
2

4X  (
1

4

3
tan  +

2

4

3
tan  ) + 5

32

5 tan4 X + 8 7

32

7 tan X + 8 8

32

8 tan X + 4
2

9X  9

3
tan  + 8

11

32

11 tan X + 8 12

32

12 tan X + 8 13

32

13 tan X +4
2

14X 14

3
tan  +  

8 16

32

16 tan X + 8 17

32

17 tan X 8 18

32

18 tan X + 8 19

32

19 tan X + 4 20

32

20 tan X                           (2.20)                     
 

 
I. The variational theory of the two 

interacting electrons on a 7 X 7 cluster of 
a square lattice. 
Configuration interaction is based on the 

variational principle in which the trial wave-function 
being expressed as a linear combination of Slater 
determinants. The expansion coefficients are 
determined by imposing that the energy should be a 

minimum. The variational method consists in 
evaluating the integral 

 HEg                  

 dtut HHH      (2.21) 

Where 
gE is the correlated ground-state energy while

 is the guessed trial wave function. We can now 
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differentially minimize (2.11) and (2.14) using the 
below equations.  















 H

XX
E

X

E

ii
g

i

g

    

(2.22) 

Subject to the condition that the correlated ground 
state energy of the two interacting electrons is a 
constant of the motion, that is 

  
0





i

g

X

E
           ;    3,2,1,0 i

         
 (2.23) 

We can now substitute (2.10) and (2.12) into (2.22) 
and use the condition given by (2.3). When the 
resulting equation is finally divided by t81   we get the 

following equation. 

 

E  2

0
X +

2

14X +
2

24X +
2

34X +
2

48X +
2

54X +
2

64X +
2

78X +
2

88X +
2

9
4X + 4

2
 2

22

2 tan X + 

4
2

4

2
X (

1

4

2
tan  +

2

4

2
tan  ) + 5

22

5

2
tan4  X + 8

2
 7

22

7 tan X +8
2

 8

22

8 tan X +4
2


2

9X 9

2
tan  

 
=

   2110 3216 XXXX 3116 XX  54634342 32163232 XXXXXXXX 7432 XX

 877685 323232 XXXXXX 9832 XX 
2

68X
 


2

8

2

7 1616 XX 2
0

2
9 )4/(416 XtUX    22

2
2

2
tan4  DX 4

2

4X (

1

4

1

4 tan D +
2

4

2

4 tan D )+ 55

2

5 tan4 DX + 8 77

2

7 tan DX + 8 88

2

8 tan DX + 

                                                                          4
2

9X 99 tan D                                          (2.24) 

Where utU 4/ is the interaction strength between 

the two interacting electrons and tEE g / is the 

total energy possess by the two interacting electrons 
as they hop from one lattice site to another.  Also 

ttD
d

l / ( l =2, 4, 5, 7, 8, 9) are the ratios of the 

individual diagonal kinetic hopping to the total 
number of lattice separations or total kinetic hopping 
sites respectively as stated in Table 2.4. 

 

                                         010 )4/(8162 XtUXXE                                                         (2.25) 

                                  3201 1632168 XXXXE                                                              (2.26) 

                          222

3

2

2

41

2

2

2

2 tan83232tan88  XDXXXXE 
                        

(2.27) 

                                  6413 1632168 XXXXE                                                              (2.28) 

)tan(tan832323232)tan(tan816
2121

4

3

4

3

44

2

75324

2

4

2

4

2

4   DXXXXXXXE                                                                                                                                                                                                    

(2.29) 

                       555

3

5

2

84

2

5

2

5 tan83232tan88  XDXXXXE                              (2.30) 

                                   6736 1632168 XXXXE                                                             (2.31)  

         7

3

77

2

78647

2

7

2

7 tan1632323232tan1616  XDXXXXXXE              (2.32)      

            8

3

88

2

98758

2

8

2

8 tan1632323232tan1616  XDXXXXXXE               (2.33) 

                             
999

3

9

2

98

2

9

2

9 tan83232tan88  XDXXXXE                         (2.34) 

 
However, we can carefully transform the 

equations given by (2.25) – (2.34) into a 
homogeneous eigen value problem of the form 

  0 ll XIA                                        (2.35) 

Where A is an N X N matrix which takes the 

dimension of the number of separations, 
l is the 

eigen value or the total energy
lE  to be determined, 

I is the identity matrix which is also of the same 

order as A , 
iX  are the various eigen vectors or 

simply the variational parameters corresponding to 

each eigen value. The values of 
lD and 

ltan are 

clearly indicated in Table A.4. After careful 
simplifications we get a 10 x 10 matrix from (2.35) 
which is shown in equation (2.36) below. From the 
resulting matrix we can now determine the total 

energies 
lE or the ground-state energies, and the 

corresponding variational parameters for various 
arbitrary values of the interaction strength u . 
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     (2.36) 

 
 

III.      PRESENTATION OF RESULTS. 

The results emerging from the matrix given 

by (2.36) are shown in Tables 3.1 and 3.2 The result 

of the single-band HM with respect to the interaction 

strength by (Chen and Mei,  1989) is denoted as 

previous study, while that of our work emerging from 

the application of the gradient Hamiltonian model is 

denoted as the present study. In this section we also 

compared our work with the ones emerging from the 

exact calculation using Guzwiller variational approach 

[18] and the correlated variational approach (CVA) 

(Chen and Mei, 1989). We also simulate the possible 

equation for the exact calculation of our present 

study. 

Table 3.1. The calculated values of the total energies lE
and the variational parameters lX

 as a    function  of 

some arbitrary values of the interaction strength tu 4/ . For lX
 ( l 0 - 4) 

Interaction 
strength 

tu 4/  

Present and 
*Previous 

study 
 

Total 
Energy 

lE  

Variational  Parameters (2D 7 X 7 square lattice) 

lX  ( l 0, 1, 2, 3, 4) 

0X  1X  2X  3X  4X  

50.00 
Present -7.9705 0.0084 0.2186 0.2767 0.3095 0.3312 

Previous -7.8929 0.0086 0.2245 0.2820 0.3135 0.3319 

40.00 
Present -7.9711 0.0104 0.2193 0.2771 0.3096 0.3313 

Previous -7.8936 0.0107 0.2253 0.2823 0.3137 0.3319 

30.00 Present -7.9721 0.0137 0.2205 0.2776 0.3099 0.3313 

 Previous -7.8947 0.0142 0.2265 0.2829 0.3139 0.3319 

20.00 
Present -7.9742 0.0202 0.2227 0.2787 0.3103 0.3314 

Previous -7.8968 0.0208 0.2288 0.2841 0.3144 0.3320 

10.00 
Present -7.9797 0.0381 0.2288 0.2816 0.3115 0.3315 

Previous -7.9028 0.0393 0.2351 0.2871 0.3156 0.3321 

5.00 
Present -7.9892 0.0682 0.2388 0.2863 0.3131 0.3314 

Previous -7.9129 0.0704 0.2456 0.2920 0.3173 0.3320 

 
0.00 

Present -8.0694 0.3040 0.3066 0.3101 0.3130 0.3172 

Previous -8.0000 0.3162 0.3162 0.3162 0.3162 0.3162 

-1.00 
Present -8.2898 0.6794 0.3643 0.2890 0.2525 0.2331 

Previous -8.2439 0.6971 0.3698 0.2890 0.2491 0.2259 

-1.50 
Present -8.8796 0.8939 0.3217 0.1959 0.1426 0.1122 

Previous -8.8660 0.8973 0.3214 0.1938 0.1400 0.1082 

-2.00 
Present -10.1014 0.9553 0.2509 0.1186 0.0747 0.0481 

Previous -10.0987 0.9557 0.2507 0.1180 0.0742 0.0473 

-2.50 
Present -116555 0.9748 0.2017 0.0777 0.0452 0.0244 

Previous -11.6547 0.9749 0.2016 0.0775 0.0451 0.0242 

-5.00 
Present -20.8077 0.9946 0.1004 0.0199 0.0103 0.0030 

Previous -20.8077 0.9947 0.1004 0.0199 0.0103 0.0030 

-10.00 
Present -40.4010 0.9987 0.0501 0.0050 0.0025 0.0004 

Previous -40.4010 0.9987 0.0501 0.0050 0.0025 0.0004 

-15.00 
Present -60.2670 0.9994 0.0334 0.0022 0.0011 0.0001 

Previous -60.2670 0.9994 0.0334 0.0022 0.0011 0.0001 
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Table 3.2. Calculated values of the total energies 
lE and the variational parameters lX  as a function of some 

arbitrary values of the interaction strength tu 4/ . For lX  ( l 5 - 9) 

Interaction 
strength 

tu 4/  

Present 
and 

*Previou
s study 

 

Total 
Energy 

lE  

Variational  Parameters (2D 7 X 7 square lattice) 

lX  ( l 5, 6, 7, 8, 9) 

5X  6X  7X  8X  9X  

50.00 
Present -7.9705 0.3546 0.3522 0.3710 0.3733 0.3782 

Previous -7.8929 0.3568 0.3490 0.3574 0.3722 0.3824 

40.00 
Present -7.9711 0.3544 0.3521 0.3709 0.3731 0.3779 

Previous -7.8936 0.3567 0.3489 0.3572 0.3719 0.3821 

30.00 Present -7.9721 0.3542 0.3520 0.3706 0.3727 0.3774 

 Previous -7.8947 0.3564 0.3488 0.3570 0.3715 0.3816 

20.00 
Present -7.9742 0.3538 0.3517 0.3702 0.3719 0.3765 

Previous -7.8968 0.3560 0.3485 0.3565 0.3707 0.3805 

10.00 
Present -7.9797 0.3525 0.3508 0.3688 0.3698 0.3737 

Previous -7.9028 0.3546 0.3476 0.3551 0.3684 0.3776 

5.00 
Present -7.9892 0.3501 0.3491 0.3661 0.3658 0.3688 

Previous -7.9129 0.3519 0.3457 0.3524 0.3641 0.3722 

 
0.00 

Present -8.0694 0.3176 0.3215 0.3314 0.3216 0.3179 

Previous -8.0000 0.3162 0.3162 0.3162 0.3162 0.3162 

-1.00 
Present -8.2898 0.2058 0.2158 0.2132 0.1923 0.1802 

Previous -8.2439 0.1971 0.2053 0.1959 0.1803 0.1699 

-1.50 
Present -8.8796 0.0780 0.0872 0.0787 0.0605 0.0498 

Previous -8.8660 0.0740 0.0827 0.0719 0.0559 0.0459 

-2.00 
Present -10.1014 0.0248 0.0301 0.0236 0.0144 0.0094 

Previous -10.0987 0.0241 0.0293 0.0223 0.0137 0.0090 

-2.50 
Present -11.6555 0.0099 0.0131 0.0089 0.0044 0.0023 

Previous -11.6547 0.0098 0.0129 0.0086 0.0043 0.0022 

-5.00 
Present -20.8077 0.0006 0.0012 0.0005 0.0001 0.0000 

Previous -20.8077 0.0006 0.0012 0.0005 0.0001 0.0000 

-10.00 
Present -40.4010 0.0000 0.0001 0.0000 0.0000 0.0000 

Previous -40.4010 0.0000 0.0001 0.0000 0.0000 0.0000 

-15.00 
Present -60.2670 0.0000 0.0000 0.0000 0.0000 0.0000 

Previous -60.2670 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 3.3: Results of the ground-state energy obtained in present study compared with previous study. 

Interaction 
strength 

tu 4/  

Present 
and 

*Previous 
study 

 

Total Energy  lE   

2D N X N Square lattices 

3 X 3 5 X 5 7 X 7 9 X 9 11 X 11 

50.00 
Present -7.1603 -7.7962 -7.9705 -8.0399 -8.0867 

Previous -7.1525 -7.7585 -7.8929 -7.9411 -7.9633 

40.00 
Present -7.1674 -7.7979 -7.9711 -8.0402 -8.0869 

Previous -7.1596 -7.7602 -7.8936 -7.9414 -7.9635 

30.00 Present -7.1789 -7.8007 -7.9721 -8.0407 -8.0872 

 Previous -7.1712 -7.7630 -7.8947 -7.9420 -7.9638 

20.00 
Present -7.2013 -7.8060 -7.9742 -8.0417 -8.0877 

Previous -7.1936 -7.7684 -7.8968 -7.9431 -7.9644 

10.00 
Present -7.2622 -7.8207 -7.9797 -8.0444 -8.0893 

Previous -7.2546 -7.7834 -7.9028 -7.9461 -7.9662 

5.00 
Present -7.3619 -7.8452 -7.9892 -8.0490 -8.0919 

Previous -7.3546 -7.8084 -7.9129 -7.9513 -7.9693 

 
0.00 

Present -8.0056 -8.0324 -8.0694 -8.0913 -8.1168 

Previous -8.0000 -8.0000 -8.0000 -8.0000 -8.0000 

-1.00 
Present -8.7483 -8.3893 -8.2898 -8.2465 -8.2322 

Previous -8.7446 -8.3668 -8.2439 -8.1878 -8.1580 

-1.50 
Present -9.4955 -8.9980 -8.8796 -8.8460 -8.8382 

Previous -9.4931 -8.9871 -8.8660 -8.8348 -8.8268 

-2.00 
Present -10.5954 -10.1541 -10.1014 -10.0947 -10.0942 

Previous -10.5941 -10.1506 -10.0987 -10.0926 -10.0919 

-2.50 
Present -12.0006 -11.6762 -11.6555 -11.6540 -11.6540 

Previous -12.0000 -11.6750 -11.6547 -11.6533 -11.6532 

-5.00 
Present -20.8917 -20.8087 -20.8077 -20.8077 -20.8077 

Previous -20.8916 -20.8086 -20.8077 -20.8077 -20.8077 

-10.00 
Present -40.4213 -40.4010 -40.4010 -40.4010 -40.4010 

Previous -40.4213 -40.4010 -40.4010 -40.4010 -40.4010 

-15.00 
Present -60.2759 -60.2670 -60.2670 -60.2670 -60.2670 

Previous -60.2759 -60.2670 -60.2670 -60.2670 -60.2670 

 

Table 3.4: Comparison of the exact calculation of the ground-state energies for large limit  
of the interaction strength ( 50u ) for various 2D N X N cluster of a square lattice. 

2D N X N 
Square 
Lattice 

 

GVA 

)/11(8
2

NEN   

CVA 

)/1(8
2

NEN   

 = 0.6250 

Present study 
(Exact) 

)/1(8
2

NEN   

 = 0.9447 

3 X 3 -7.1111 -7.4444  -7.1603 

5 X 5 -7.6800 -7.8000  -7.6977 

7 X 7 -7.8367 -7.8980  -7.8458 

9 X 9 -7.9012 -7.9382  -7.9067 

11 X 11 -7.9339 -7.9587  -7.9375 

 

 

IV. DISCUSSION OF RESULTS. 

The total energies and the variational 
parameters for the 2D 7 X 7 square lattice obtained 
from the matrix (2.36) are shown in Tables 3.1and 

3.2 The table shows that (i) the total energy possess 
by the two electrons is non-degenerate and it 
decreases negatively as the interaction strength is 

decreased, (ii) 0X  increases as the interaction 

strength is decreased. The other variational 
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parameters first increase before they start decreasing 
as the interaction strength is made more negatively 
large.  
  We infer from this result that when the 
interaction strength is made more negatively large, 
then the electrons now prefer to remain close 
together (Cooper pairing). This is represented by the 

greater value of 0X  (double occupancy). Generally, it 

is this coming together or correlation of electrons that 
is responsible for the many physical properties of 
condensed matter physics, e.g. superconductivity, 
magnetism, super fluidity. However, in the positive 
regime of large interaction strength, the two electrons 
prefer to stay far apart as possible and the event is 
synonymous with ferromagnetism. 

One remarkable result of the CVA as shown 

in Tables 3.1 and 3.2 is the values of the variational 

parameters obtained when the interaction strength 

between the two electrons is zero ( 0u ). In this 

case, the variational parameters produced by the 

single-band HM have the same values. This implies 

that the probability of double occupancy is the same 

as single occupancy. When 0u  we observe a free 

electron system (non-interacting); the two electrons 

are not under the influence of any given potential 

they are free to hop to any preferable lattice site.  

However, the variational parameters 

produced by the gradient Hamiltonian model when 

0u  are equal. The interpretation of this is that even 

in the absence of interaction strength or potential 

function 0u  there is still an existing residual 

potential field between the two interacting electrons 

hence the unequal probability of being found on any 

of the lattice separations.  It can also be assumed 

that the linear dependence of the electrons on the 

uniform lattice separations and the gradient could be 

the reason for the unequal variational parameters. 

The relationship between the electrons is now based 

on the statistical dependence of the electrons on the 

uniform lattice separation distance and the angular 

displacement as contained in the Hamiltonian model. 

The variations in the angular displacements could 

also be responsible for the fluctuation in the values of 

the variational parameters. 

The difference in values of the total energies 

for some 2D N X N square lattices is shown in Table 

3.3. In a particular lattice dimension the values of the 

ground-state energies obtained in our present study 

consistently decreases negatively as the interaction 

strength is decreased. The values of the total 

energies are also smaller than those of the previous 

study carried out by Chen and Mei. From the table, in 

the regime of the interaction strength 1u , the 

result of the ground-state energies for both the 

present and previous studies consistently increases 

negatively in value as we move from a lower 

dimension to higher ones.  

The result of the total energies for some 2D 

N X N square lattices is shown in Table 3.4. It is clear 

from the table that as the interaction strength is made 

positively large the difference in values of the total 

energies is very small, as a result we assume u = 50 

to be large enough to typify the large limit of the 

interaction strength. It is evident from the table that

varies with N, the number of lattice sites. For large N, 
  approaches the value of 0.9447 in this present 

study, while  is 0.6250 in the work of Chen and Mei. 

The result of the ground- state energies for various 

2D N x N square lattices obtained in this present 

study agrees suitably enough with the results of GVA 

and CVA. 

V. CONCLUSION. 

In this work, we utilized two types of 

Hamiltonian model to study the behaviour of two 

interacting electrons on a two dimensional (2D) N X 

N square lattice. The Hamiltonian is the single-band 

HM and the gradient Hamiltonian model. Obviously, 

the total energies of the two interacting electrons as a 

function of the interaction strength are consistently 

lower than those of the original single-band HM. Thus 

the inclusion of the gradient parameters in the single 

band-HM yielded better results of the ground-state 

energies. Hence the lower ground-state energy 

results of our new model are quite more compactable 

with quantum variational  

requirements; that is, the ground-state 

energy should be a minimum. Also our study 

revealed that both the single-band HM and the 

gradient Hamiltonian model converge to the same 

values of total energies and variational parameters in 

the large negative values of the interaction strength. 
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Table A.1: Relevant information derived from the basis set of the geometry of 2D N X N square lattice. 

Lattice separation 

length l and ld  

Total number of pair electronic states for different 2D N x N square 
lattices 


2211

, yxyx  

l  
l

  
l

d  11 x 11 9 x 9 7 x 7 5 x 5 3 x 3 

0 
0  0   11,11   11,11   11,11   11,11   11,11  

1 
1  a   12,11   12,11   12,11   12,11   12,11  

2 
2

 a2  
 22,11

 
 22,11

 
 22,11

 
 22,11

 
 22,11

 
3 

3  a2   13,11   13,11   13,11   13,11  -- 

4 4
 

a5
 

 23,11
 

 23,11
 

 23,11
 

 23,11
 

-- 

 32,11   32,11
 

 32,11
 

 32,11
 

-- 

5 
 5

  
a8   33,11   33,11   33,11   33,11  -- 

6 
6  a3

  14,11   14,11   14,11  -- -- 

7 
7  a10

 
 24,11   24,11   24,11  -- -- 

8 
8  a13

 
 34,11   34,11   34,11  -- -- 

9 
9  a18

 
 44,11   44,11   44,11  -- -- 

10 
10  a4   15,11   15,11  -- -- -- 

11 
11  a17

 
 25,11   25,11  -- -- -- 

12 
12  a20

 
 35,11   35,11  -- -- -- 

13 
13  a25   45,11   45,11  -- -- -- 

14 
14

 
a32

 
 55,11   55,11  -- -- -- 

15 
15

 
a5

 
 16,11

 
-- -- -- -- 

16 
16

 
a26

 
 26,11

 
-- -- -- -- 

17 
17

 
a29

 
 36,11

 
-- -- -- -- 

18 
18

 
a34

 
 46,11

 
-- -- -- -- 

19 
19

 
a41

 
 56,11

 
-- -- -- -- 

20 
20

 
a50

 
 66,11

 
-- -- -- -- 

Table A.2: Relevant information derived from the basis set of the geometry of 2D N X N square lattice. 

The table gives the Lattice Separation l and actual lattice separation distance
l

d . 

Lattice separation 

length l and ld  

11 x 11 

ll


 

9 x 9 

ll


 

7 x 7 

ll


 

5 x 5 

ll


 
 

3 x 3 

ll


 

l  l
 l

d
 )(

2
N

l


 
)(

2
N

l


 
)(

2
N

l


 
)(

2
N

l


 
)(

2
N

l


 

0 0  0  1211211   81811   49491   25521   991   

1 1  a  
            

4841214   
324814   196494   100524   3694   

2 2
 a2  

4841214   324814   196494   100524   3694   

3 3  a2  4841214   324814   196494   100524   -- 

4 4
 

a5  
4841214   

324814   196494   100524   -- 

4841214   324814   196494   100524 
 -- 
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5 
 5

  
a8  4841214 

 
324814   196494   100524   -- 

6 6  a3
 4841214   324814   196494   -- -- 

7 7  a10  
9681218   648818   392498   -- -- 

8 8
 

a13
 

9681218   648818   392498   -- -- 

9 9  a18
 

4841214   324814   196494   -- -- 

10 10  a4  4841214   324814   -- -- -- 

11 11  a17
 

9681218   648818   -- -- -- 

12 12  a20
 

9681218   648818   -- -- -- 

13 13  a25  9681218   648818   -- -- -- 

14 14
 

a32
 

4841214   324814   -- -- -- 

15 15
 

a5
 

4841214   -- -- -- -- 

16 16
 

a26
 

9681218   -- -- -- -- 

17 17
 

a29
 

9681218   -- -- -- -- 

18 18
 

a34
 

9681218   -- -- -- -- 

19 19
 

a41
 

9681218   -- -- -- -- 

20 20
 

a50
 

4841214   -- -- -- -- 

2
)( NXN  14641 6561  2401 625

 
81

 

 

  

http://www.imjst.org/


International Multilingual Journal of Science and Technology (IMJST) 

ISSN: 2528-9810 

Vol. 1 Issue 2, July - 2016 

www.imjst.org 

IMJSTP29120050 100 

Table A.3: Relevant information derived from the basis set of the geometry of 2D N X N square lattice. 

Lattice separation 

length l and ld  

Total number of pair electronic states for different 2D N x N square lattices 

ll
  

l  l
  

ld  
2211

, yxyx  

Number of 
NN 

l
  

11 X 
11 
 

9 X 9 
 

7 X 7 
 

5 X 5 
 

3 X 3 
 

0 0  0   11,11  1 (on-site) 121 81  49  25  9  

1 
1  a   12,11  4 (linear) 484 324 196 100 36  

2 
2

 a2  
 22,11

 
4(diagonal) 484 324 196 100 36  

3 
3  a2   13,11  4 (linear) 484 324 196 100 -- 

4 4
 

a5
 

 23,11
 

4(diagonal) 484 324 196 100 -- 

 32,11  4(diagonal) 484 324 196 100
 

-- 

5 
 5

  
a8   33,11  4(diagonal)    484 484

 
324 196 100 -- 

6 
6  a3

  14,11  4 (linear) 484 324 196 -- -- 

7 
7  a10

 
 24,11  8 (diagonal) 968 648 392 -- -- 

8 
8  a13

 
 34,11  8 (diagonal) 968 648 392 -- -- 

9 
9  a18

 
 44,11  4(diagonal) 484 324 196 -- -- 

1
0 10  a4   15,11  4 (linear) 

484 
324 

-- 
-- -- 

1
1 11  a17

 
 25,11  8 (diagonal) 

968 
648 -- -- -- 

1
2 12  a20

 
 35,11  8 (diagonal) 

968 
648 

-- 
-- -- 

1
3 13  a25   45,11  8 (diagonal) 

968 
648 

-- 
-- -- 

1
4 

14
 a32

 
 55,11  4(diagonal) 

484 
324 

-- 
-- -- 

1
5 

15
 a5

 
 16,11

 4 (linear) 
484 -- -- 

-- -- 

1
6 

16
 a26

 
 26,11

 8 (diagonal) 
968 

-- -- -- -- 

1
7 

17
 a29

 
 36,11

 8 (diagonal) 
968 -- -- 

-- -- 

1
8 

18
 a34

 
 46,11

 8 (diagonal) 
968 -- -- 

-- -- 

1
9 

19
 a41

 
 56,11

 8 (diagonal) 
968 -- -- 

-- -- 

2
0 

20
 a50

 
 66,11

 4(diagonal) 
484 -- -- 

-- -- 

2
)( NXN  

14641 6561 2401 625 81 

     Note that NN is the nearest neighbour. 
 

 

  

http://www.imjst.org/


International Multilingual Journal of Science and Technology (IMJST) 

ISSN: 2528-9810 

Vol. 1 Issue 2, July - 2016 

www.imjst.org 

IMJSTP29120050 101 

Table A.4: Relevant information on the angular displacement derived from the basis set of the geometry of 2D N x 
N square lattice for only diagonal lattice sites. 

Lattice 
separation 

length l  

 

11 x 11 

ll
  

9 x 9 

ll
  

7 x 7 

ll
  

5 x 5 

ll
  

3 x 3 

ll
  

l  
 

l

 
l

D  
l

tan  
l

D  
l

tan  
l

D  
l

tan
 l

D  
l

tan
 l

D  
l

tan  

2 a2  
0.0331 1.00 0.0494 1.0 0.0816 1.00 0.1600 1.00 0.0124 1.00 

4 a5  

0.0331 
2.00 

0.0494 
2.0 

0.0816 
2.00 

0.1600 
2.00 -- -- 

0.0331 0.50 0.0494 0.5 0.0816 0.50 0.1600
 0.50 -- -- 

5 a8  0.0331
 1.00 0.0494 1.0 0.0816 1.00 0.1600 1.00 -- -- 

7 a10
 

0.0661 3.00 0.0988 3.0 0.1633 3.00 -- -- -- -- 

8 a13
 

0.0661 1.50 0.0988 1.5 0.1633 1.50 -- -- -- -- 

9 a18  
0.0331 1.00 0.0494 1.0 0.0816 1.00 -- -- -- -- 

11 a17
 

0.0661 4.00 0.0988 4.00 -- -- -- -- -- -- 

12 a20
 

0.0661 2.00 0.0988 2.00 -- -- -- -- -- -- 

13 a25  0.0661 1.33 0.0988 1.33 -- -- -- -- -- -- 

14 a32  
0.0331 1.00 0.0494 1.00 -- -- -- -- -- -- 

16 a26
 

0.0661 5.00 -- -- -- -- -- -- -- -- 

17 a29
 

0.0661 2.50 -- -- -- -- -- -- -- -- 

18 a34
 

0.0661 1.66 -- -- -- -- -- -- -- -- 

19 a41
 

0.0661 1.25 -- -- -- -- -- -- -- -- 

20 a50
 

0.0331 1.00 -- -- -- -- -- -- -- -- 

The ratio l
D  is found from the division of the pair electronic states in each separation by the total number of 

electronic states. For example, 0494.06561/3242 D . 

 

Table A.5: Total number of electronic states available to two interacting electrons in a 2D N X N even square   
lattice. 

Lattice 
Dimensio

n 

 
Dimension of 

matrix 
 
 

Central lattice site 
 

Even 

Number of 

separation length l  

 
Even 

Number of 
electronic 

state 

Number of 
on-site 

electrons 

2D 

)( NN   

N x N 









2
,

2

NN
 







 

8

)2)(4( NN
 

2
)( NN   

)( NN   

4 X 4 6 x 6 (2 , 2) 6 256 16 

6 X 6 10 x 10 (3 , 3) 10 1296 36 

8 X 8 15 x 15 (4 , 4) 15 4096 64 

10 X 10 21 x 21 (5 , 5) 21 10000 100 

12 X 12 28 x 28 (6 , 6) 28 20736 144 

 
Table A.6: Total number of electronic states available to two interacting electrons in a 2D N X N odd square lattice. 

Lattice 
Dimension 

Dimension 
of matrix 
 

Central lattice site 
 
Odd 

Number of 

separation length l  

Odd 

Number 
of 
electronic 

Number of 
on-site 
electrons 
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 state 

2D 

)( NN   

N x N 








 

2

1
,

2

1 NN
 







 

8

)1()3( NN
 

2
)( NN   

)( NN   

3 X 3 3 x 3 (2 , 2) 3 81 9 

5 X 5 6 x 6 (3 , 3) 6 625 25 

7 X 7 10 x 10 (4 , 4) 10 2407 49 

9 X 9 15 x 15 (5 , 5) 15 6561 81 

11 X 11 21 x 21 (6 , 6 ) 21 14641 121 
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