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Abstract—The major characteristic of the single-

band Hubbard model (HM) is to redistribute 

electrons at a uniform lattice separation distance 

within the molecular lattice. Hence, it is only 

linearly dependent on lattice separations 

distance. Thus the single-band Hubbard model 

does not consider the lattice gradient 

encountered by interacting electrons as they hop 

from one lattice point to another. The linear 

dependence of the single-band HM only on lattice 

separations would certainly not provide a 

thorough understanding of the interplay between 

interacting electrons. Consequently, we have in 

this study developed a gradient Hamiltonian 

model to solve the associated defects pose by 

the limitations of the single-band Hubbard model. 

Thus, we utilized the single-band HM and the 

gradient Hamiltonian model to study the 

behaviour of two interacting electrons on a two 

dimensional (2D) 9X9 square lattice. We also 

used two basic forms of variational trial 

wavefunction. Firstly, the correlated trial 

wavefunction introduced by Chen and Mei, and 

correlated trigonometric trial wave function which 

we introduced in this present study. It is revealed 

that the results of the ground-state energies 

produced by the gradient Hamiltonian model are 

negatively lower and non- degenerate. We have 

also shown in this work, that the repulsive 

Coulomb interactionU  which in part leads to the 

strong electronic correlations, would indicate that 

the two electron system prefer not to condense 

into s - wave superconducting singlet state ( s = 

0), at high positive values of the interaction 

strength.  
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I.       INTRODUCTION. 
In a normal conductor, an electrical current may be 
visualized as a fluid of electrons moving across a 
heavy ionic lattice. The electrons are constantly 
colliding with the ions in the lattice, and during each 
collision some of the energy carried by the current is 
absorbed by the lattice and converted into heat 
(which is essentially the vibrational kinetic energy of 
the lattice ions). As a result, the energy carried by the 
current is constantly being dissipated. This is the 
phenomenon of electrical resistance. 
 
The situation is different in a superconductor. In a 
conventional superconductor, the electron fluid 
cannot be resolved into individual electrons. Instead, 
it consists of bound pairs of electrons known as 
Cooper pairs. This pairing is caused by an attractive 
force between electrons from the exchange of 
phonons. Due to quantum mechanics, the energy 
spectrum of this Cooper pair possesses an energy 
gap, meaning there is a minimum amount of energy 

∆𝐸 that must be supplied in order to excite the fluid. 
Therefore, if ∆𝐸 is larger than the thermal energy of 
the lattice (given by kT , where k  is the Boltzmann’s 

constant and T is the temperature),  the fluid will not 
be scattered by the lattice. The Cooper pair fluid is 
thus a super fluid, meaning it can flow without energy 
dissipation [1]. 
 
Superconductivity occurs in a wide variety of 
materials, including simple elements like tin and 
aluminium, various metallic alloys, some heavily-
doped semiconductors and a family of cuprate – 
perovskite ceramic materials known as high 
temperature superconductors. Superconductivity 
does not occur in noble metals like gold and silver, 
nor in most ferromagnetic metals. 
  
The single band Hubbard model (HM) [2] is the 
simplest Hamiltonian containing the essence of 
strong correlation. Notwithstanding its apparent 
simplicity, our understanding of the physics of the 
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Hubbard model is still limited. In fact, although its 
thermodynamics was clarified by many authors [3] 
various important quantities such as momentum 
distribution and correlation functions, which require 
an explicit form of the wave function, have not been 
properly explored [4] 
 
A particle like an electron, that has charge and spin 
always feels the presence of a similar particle nearby 
because of the Coulomb and spin interactions 
between them. So long as these interactions are 
taken into account in a realistic model, the motion of 
each electron is said to be correlated. The physical 
properties of several materials cannot be described in 
terms of any simple independent electron picture; 
rather the electrons behave cooperatively in a 
correlated manner [5]. The interaction between these 
particles depends then in some way on their relative 
positions and velocities. We assume for the sake of 
simplicity that their interaction does not depend on 
their spins.  
  
Electron correlation plays an important role in 
describing the electronic structure and properties of 
molecular systems.  Dispersion forces are also due to 
electron correlation. The theoretical description of 
strongly interacting electrons poses a difficult 
problem. Exact solutions of specific models usually 
are impossible, except for certain one-dimensional 
models. Fortunately, such exact solutions are rarely 
required when comparing with experiment [6]. 
  
Most measurements, only probe correlations on 
energy scales small compared to the Fermi energy 
so that only the low – energy sector of a given model 
is of importance. Moreover, only at low energies can 
we hope to excite only a few degrees of freedom, for 
which a meaningful comparison to theoretical 
predictions can be attempted [7].  
 
One of the first steps in most theoretical approaches 
to the electronic structure of molecules is the use of 
mean – field models or orbital models. Typically, an 
orbital model such as Hartree – Fock self – 
consistent – field theory provides an excellent starting 
point which accounts for the bulk ( 99 %) of the total 

energy of the molecule [8].  
 
However, the component of the energy left out in 
such a model, which results from the neglect of 
instantaneous interactions (correlations) between 
electrons, is crucial for the description of chemical 
bond formation. The term “electron correlation 
energy’’ is usually defined as the difference between 
the exact non-relativistic energy of the system and 
the Hartree – Fock (HF) energy. Electron correlation 
is critical for the accurate and quantitative evaluation 
of molecular energies [9].   
 
Interacting electrons are key ingredients for 
understanding the properties of various classes of 
materials, ranging from the energetically most 

favourable shape of small molecules to the magnetic 
and superconductivity instabilities of lattice electron 
systems, such as high-Tc superconductors and heavy 
fermions compounds [10]. 
 
In probability theory and statistics, correlation, also 
called correlation coefficient, indicates the strength 
and direction of a linear relationship between two 
random variables. In general statistical usage, 
correlation or co-relation refers to the departure of 
two variables from independence, although 
correlation does not imply causation [11]. 
 
Electron correlation effects, as defined above, are 
clearly not directly observable. Correlation is not a 
perturbation that can be turned on or off to have any 
physical consequences. Rather, it is a measure of the 
errors that are inherent in HF theory or orbital 
models. This may lead to some ambiguities. While 
HF is well – defined and unique for closed – shell 
molecules, several versions of HF theory are used for 
open-shell molecules [12].    
 
The organization of this paper is as follows. In section 
2 we provide the method of this study by giving a 
brief description of the single - band Hubbard 
Hamiltonian and the gradient Hamiltonian model. We 
also present in this section an analytical solution for 
the two particles interaction in a 9 X 9 cluster of the 
square lattice. In section 3 we present results 
emanating from this study. The result emanating from 
this study is discussed in section 4. This paper is 
finally brought to an end with concluding remarks in 
section 5. A brief summary of the various electronic 
states available to two electrons interactions on a 9 X 
9 cluster of the square lattice is presented in the 
appendix and this is immediately followed by list of 
references.  
 
A Research Methodology 
In this study, we applied the gradient Hamiltonian 
model on the correlated trial wave-function. The 
action of the gradient Hamiltonian model on the 
correlated trial wave-function is thus studied by 
means of variational technique.  

II. MATHEMATICAL THEORY. 
A  The Single-Band Hubbard Hamiltonian (HHM).  
The single-band Hubbard Hamiltonian (HHM) [2] 
reads;

  


  
i

i
i

ij

ji nnUchCCtH


 ..

      

(2.1) 

where ji,  denotes nearest-neighbour (NN) sites, 

  ji CC
 is the creation (annihilation) operator with 

electron spin   or   at site i , and  iii CCn   

is usually known to be the occupation number 

operator, ..ch (  ij CC


) is the hermitian conjugate . 

The transfer integral 
ijt  is written as ttij  , which 
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means that all hopping processes have the same 
probability. The parameter U is the on-site Coulomb 

interaction. It is worth mentioning that in principle, the 
parameter U is positive because it is a direct 

Coulomb integral. 
 
B.  The Gradient Hamiltonian Model (GHM).  
The single band Hubbard model (HM) has some 
limitations as it is only linearly dependent on lattice 
separations. It does not consider the lattice gradient 
encountered by interacting electrons as they hop 
from one lattice point to another within the cluster 
lattice. The linear dependence of the single-band HM 

only on lattice separations would certainly not provide 
a thorough understanding of the interplay between 
interacting electrons. Consequently, we have in this 
work, extended the single-band Hubbard model by 
introducing gradient displacement parameters. We 
hope that the inclusion of the gradient displacement 
parameters will help to resolve the associated defects 
pose by the limitations of the single-band HM on 
application to the determination of some quantum 
quantities. The gradient Hamiltonian model read as 
follows: 
 

                

 


  
i

i
i

ij

ji nnUchCCtH


 ..  dt 
 ji

ltan                             (2.2)                

Now, 
d

ijt =
dt is the diagonal kinetic hopping term or 

transfer integral between two lattice sites, ltan is the 

angle between any diagonal lattice and l represent 

the diagonal lattice separations while the other 
symbols retain their usual meaning. 

 
C.  The Correlated Variational Approach (CVA).  
The correlated variational approach established by 
[13] is of the form

                  

                                
  iiX i

i

,  





ji
ji

jijiX ,,

                           

(2.3) 

where  ,...,2,1,0iX i  are variational parameters 

and  ji ,  is the eigen state of a given electronic 

state, l  is the lattice separation. However, because 

of the symmetry property of (2.3) we can recast it as 
follows. 

 
llX

l

                                (2.4) 

D. The Correlated Trigonometric Trial Wave 
Function. 
The correlated trigonometric trial wave function we 
develop for the present study is given by the equation  

 
  iiX i

i

,  





ji
ji

jijiX ,,

 

+ 

                                                                   l tan   





ji
ji

jijiX ,,

                   

(2.5)

               

 

Where  is a statistical factor that normalizes the 

kinetic behaviour of the diagonal hopping electrons 
with respect to the entire lattice sites that is, it is the 
ratio of the number of diagonal separations to the 

total number of lattice sites, ltan  is the angle 

between any diagonal lattice, l represent the diagonal 

lattice separations while the other symbols retain 
their usual meaning according to (2.3). Also, because 
of the symmetry property of (2.3) we can recast it as 
follows. 

llX
l

   + lllX
l

  tan

    
(2.6) 

In this current study the complete details of the basis 
set of the two dimensional (2D) N X N lattices can be 
found in [14]. However, because of the complexity of 
the lattice basis set we are only going to enumerate 
the relevant information that is suitable to our present 
study in the tables in the appendix. 
  
E. Method of determining the Lattice 
Separations for various 2D N X N Square Lattices. 

Let us consider the coordinates of a 2D N X N square 

lattice which is represented by ),(
11

yx and ),(
22

yx . 

Suppose one electron is located at the first 
coordinate while the other electron is located at the 
second coordinate. Then we can write that the 
diagonal lattice separation is given by the expression

   221

2

21 aa yyxx   , also for linear lattice 

separation it is either aaxx 2,121  and

021  yy  or ,2,121 aayy 
 

and 01  xx , 

while for the on-site lattice separation we have that

02121  yyxx  Thus the corresponding 

diagonal lattice separation angle is given by

)/(tan xy
l

 . 

The various values of ltan are enumerated in Table 

A.2. The reader should note that there are two basic 
separations in lattice separation 4l or diagonal 

lattice separation distance ad 5 . There are also a 

total of 11 diagonal lattice separations while linear 
lattice separations are neglected in the third 
summation of (2.2).  
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F.   Evaluation of the Quantum State Functions 

 and  H  of the Two Interacting 

electrons. 

Now when the correlated trigonometric trial wave-
function given by (2.6) is written out in full on account 
of the information enumerated in Tables 2.1 and 2.2   
we get 

 = 00 X + 11 X + 22 X + 3X 3 + 4X 4 + 5X 5 + 6X 6 + 7X 7 + 8X 8 + 9X 9 +

10X 10 + 11X 11 + 12X 12 + 13X 13 + 14X 14 +   222 tan X + 

4X ( 4

1

4tan  + 4

2

4tan  )+ 555 tan X + 777 tan X + 888 tan X + 999 tan X +     

      111111 tan X + 121212 tan X + 131313 tan X + 141414 tan X                           (2.7)                

When we carefully use equation (2.2) to act on 
equation (2.7) and with the proper application of the 
information provided in Tables A.1 and A.3 above we 
can conveniently solve for the two quantum state 

functions  and  H . However, to get at 

these two significant quantum states there are two 
important conditions which must be duly followed. 
The conditions are as follows: 
 
(i) the field strength tensor  

     








jiiff

jiiff
ji ji

0

1


             

  (2.8) 

(ii)  the  Marshal rule for non-conservation of  parity 
[15].                 

       ijji ,,
               

(2.9)     

Hence we can establish that the inner product 

  of the variational trial wave function is given 

by  

 

 =  2

0
81 X +

2

14X +
2

24X +
2

34X +
2

44X +
2

54X +
2

64X +
2

78X +
2

88X +
2

94X +
2

104X +
2

118X +
2

128X +
2

138X +    

                 2
144X  + 81

2
  2

22

2
tan4 X + 4

2

4X ( 1

4

2
tan  + )tan

2

4

2
 4 5

22

5 tan X +8 7

22

7 tan X + 

8 8

22

8 tan X + 4 9

22

9 tan X + 8 11

22

11 tan X + 8 12

22

12 tan X + 8 13

22

13 tan X + 4
2

14X 14
2tan 

       
(2.10)

        
 

 

  54634342312110 32163232163216))(81( XXXXXXXXXXXXXXtH 7432 XX

 13912898117871067685 3232323232163232 XXXXXXXXXXXXXXXX  12111110 3232 XXXX

 14131312 3232 XXXX 2
0

2

14

2

13

2

12

2

11

2

10
)4/(4161616168 XtUXXXXX   

   2
32

2
2

tan4)()81(  Xt
d

4
2

4X  (
1

4

3
tan  +

2

4

3
tan  ) + 5

32

5 tan4 X + 8 7

32

7 tan X + 8 8

32

8 tan X +  

4
2

9X  9

3
tan  + 8 11

32

11 tan X + 8 12

32

12 tan X + 8 13

32

13 tan X + 4
2

14X 14
3tan 

                               
(2.11)

                         
          

Again we should understand that the values of 

ll
 is stated in Tables A.1 - A.2.  

G. The Variational Theory of the Two 
Interacting Electrons. 
Configuration interaction is based on the variational 
principle in which the trial wave-function being 

expressed as a linear combination of Slater 
determinants. The expansion coefficients are 
determined by imposing that the energy should be a 
minimum. The variational method consists in 
evaluating the integral 

                             
 HEg

 dtut HHH                                            (2.12) 

Where 
gE is the correlated ground-state energy while

 is the guess trial wave function. We can now 

differentially minimize (2.11) and (2.14) using the 
below equations;  

                                          















 H

XX
E

X

E

ii
g

i

g

                                       

(2.13) 

However, the applicability of (2.13) is subject to the 
condition that the correlated ground state energy of 
the two interacting electrons is a constant of the 
motion, that is 

0




i

g

X

E
  ;  14,,3,2,1,0  i

              
(2.14) 

Hence upon the substitution of (2.10) and (2.11) into 
(2.13) and also by dividing all through the resulting 
equation by t81 we get 

E  2

0
X +

2

14X +
2

24X +
2

34X +
2

44X +
2

54X +
2

64X +
2

78X +
2

88X +
2

94X +
2

104X +
2

118X +
2

128X +
2

138X + 4
2

14
X + 
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2
  2

22
2 tan4 X 4

2

4X (
1

4

2
tan  +

2

4

2
tan  ) + 5

22

5 tan4 X + 8 7

22

7 tan X + 8 8

22

8 tan X + 4
2

9X 9

2
tan  + 

 8 11

22

11 tan X
 
+ 8 12

22

12 tan X + 8 13

22

13 tan X + 4 14
22

14 tan X  

 
=      2110 3216 XXXX 3116 XX 4232 XX

 546343 321632 XXXXXX 7432 XX 8532 XX  8710676 321632 XXXXXX 11732 XX

 13912898 323232 XXXXXX  12111110 3232 XXXX  14131312 3232 XXXX 
2

108X 
2

1116X

2
0

2
14

2
13

2
12 )4/(4161616 XtUXXX  

2
  2

3
2

2
2 tan4 DX 4

2

4X (
1

4

31

4 tan D +
2

4D
2

4

3
tan  ) + 5

3

5

2

5 tan4 DX + 8

7

3

7

2

7 tan DX + 8 8

3

8

2

8 tan DX + 4
2

9X 9

3

9 tan D + 8              11

3

11

2

11 tan DX +  8 12

3

12

2

12 tan DX + 8 13

3

13

2

13 tan DX

+ 4 14
3

14
2
14 tan DX                            (2.15)                                                    

Where utU 4/ is the interaction strength between 

the two interacting electrons and tEE g / is the 

total energy possess by the two interacting electrons 
as they hop from one lattice site to another.  Also 

ttD
d

l /  ( l =2, 4, 5, 7, 8, 9, 11, 12, 13, 14) are the 

ratios of the individual diagonal kinetic hopping to the 
total number of lattice separations or total kinetic 
hopping sites respectively. For example,

6561/3242 D (0.0494), and  = 11/81 = 0.1358 

(number of diagonal lengths divided by the number of 
lattice sites). Now with the use of (2.13) we can 
carefully transform the equation given by (2.15) into a 
homogeneous eigen value problem of the for 

      0 ll XIA                                  (2.16)
 

Where A is an N X N matrix which takes the 

dimension of the number of separations, 
l is the 

eigen value or the total energy
lE  to be determined, 

I is the identity matrix which is also of the same 

order as A , 
iX  are the various eigen vectors or 

simply the variational parameters corresponding to 
each eigen value.  
 
After careful simplifications we shall realize a 15 x 15 
matrix from (2.16) and from the resulting matrix we 
can now calculate the total energies and the 

corresponding variational parameters for various 
arbitrary values of the interaction strength. 
 
H. Calculation of the Correlation Time 
between the Two-Interacting Electrons. 
The rate at which the force )(tF   agitating the motion 

of the electrons can be characterized by some 
correlation time  which measures roughly the mean 

time between two successive maxima (or minima) of 
the fluctuating function )(tF . Correlation time is quite 

small on a macroscopic scale. The ordinary statistical 

average of a function of position lx  and angular 

displacement 
l

 at a given time over all systems of 

the lattice may be written as 

 ),(),(
1

);,( tytxy
N

txy ll      (2.17) 

Where N is the total number of sites ( l for only the 

diagonal separation length). The operations of taking 

a time derivative and taking an ensemble average 

commute since one can interchange the order of 

differentiation and summation. The velocity and mean 

velocity of the interacting electrons are given by  

                                   v  













 ),(),(

1
);,( tytxy

Ndt

d
txy

dt

d

ll                                   (2.18) 

                                   v  







 ),(),();,( tytxy

dt

d
txy

dt

d

ll                                        (2.19) 

                               v ),(),(),(),();,( ty
dt

d
txytxy

dt

d
tytxy

dt

d

llll                         (2.20) 

The mean acceleration a  of the interacting electrons becomes 

    a  ),(),(),(),();,(
2

2

2

2

txy
dt

d
tytxy

dt

d
ty

dt

d
txy

dt

d

dt

vd

llll     

                                                 

),(),(),(),(
2

2

ty
dt

d
txyty

dt

d
txy

dt

d

llll                                 (2.21)                                   

           a  ),(),(),(),(),(),(2
2

2

2

2

2

2

ty
dt

d
txytxy

dt

d
tytytxy

dt

d

dt

vd

llllll  

              

(2.22) 
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We can now multiply through (2.22) by   (the 

reduced mass of the two interacting electrons). The 
multiplication will simply translate the acceleration of 
the two interacting electrons into force. It should also 

be made known that the force responsible for the 
acceleration of the electrons can be described as a 
sum of both the internal )(tF and external )(t forces. 

That is                                                   
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d

llll  

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


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Where )(t is the external force. By integrating all through the equation given by (2.25) twice we get 

              

dttFtytxy
dt

d
tytxy

dt

d

llll  







)(),(),(),(),(2                                         (2.26) 

                                  tddttFtytxy ll )(),(),(3
2

                                                         (2.27) 

                         tddttytxytytxy llll dt

d
),(),(.),(),(3

2

2

                                     (2.28) 

                               
),(),(.),(),(3 tytxytytxy llll                                               (2.29)

),(),(2. tytxy ll                         (2.30) 

),(),(2. tytxyvv ll                    (2.31) 

)()(2 llll yxyvE  
                        

(2.32) 

l

l

l
E

yxyv l )()(2 
                            (2.33) 

Where we have introduced the same constraint for 

both lE and 
l

 ( l = 2, 4, 5, 7, 8, 9, 11, 12, 13, 14) and 

also suppressed t  in (2.33) for clarity of purpose. 

Thus vE
l

 is the correlated ground-state energy 

which is the same as the total energy of the 
interacting electrons and it has a unit of kgm

2
/s

2 
or 

simply Joules J. The Amstrong is the quantum 
analogue of length in classical mechanics. The 
reduced mass  has the usual unit of kg

 
with a value 

of 
31

101.9


 kg, the unit of the mean velocity of 

electron v is -0.00028 m/s and finally the gradient 

parameter l is in radian. Hence the unit of the 

correlation time l is seconds s .  

To obtain the value of )(
l

xy the calculation is simply 

done as follows:
 

)(
l

xy = 
l

X   
l

d
10

10



 

(meters). 

This calculation would certainly convert the 

dimensionless values of the variational parameters to 

the dimension of length meters. 

 

III.         PRESENTATION OF RESULTS. 

The results emerging from the matrix given by (2.16) 
are shown in Table 3.1 while results of the correlation 

time
l which is given by equation (2.33) are 

enumerated in Table 3.2. We should also note that 
the result of the single-band HM with respect to the 
interaction strength is denoted as previous study 
while that of the gradient Hamiltonian model is 
denoted as present study. 
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Table3.1. shows the calculated values of the Total Energies 
lE and the Variational Parameters lX possess by the 

Interacting Electrons as a function of some arbitrary values of the Interaction Strength u . for values of   

 60 l
l

X  

  

tu 4/

 

Present 

and 

*Previous 

study 

 

Total 

Energy 

lE  

Variational  Parameters 

lX  ( l 0, 1, 2, 3, 4, 5, 6) 

0X  
1X  2X  3X  

4X  5X  6X  

50 
Present -8.0399 0.0061 0.1577 0.2000 0.2277 0.2433 0.2621 0.2711 

Previous -7.9411 0.0063 0.1649 0.2076 0.2334 0.2472 0.2675 0.2673 

40 
Present -8.0402 0.0075 0.1582 0.2003 0.2279 0.2434 0.2621 0.2712 

Previous -7.9414 0.0079 0.1656 0.2080 0.2336 0.2473 0.2675 0.2673 

30 Present -8.0407 0.0099 0.1592 0.2009 0.2282 0.2436 0.2621 0.2712 

 Previous -7.9420 0.0104 0.1666 0.2086 0.2340 0.2475 0.2675 0.2674 

20 
Present -8.0417 0.0146 0.1610 0.2020 0.2289 0.2441 0.2622 0.2712 

Previous -7.9431 0.0153 0.1686 0.2098 0.2347 0.2480 0.2676 0.2674 

10 
Present -8.0444 0.0276 0.1661 0.2050 0.2306 0.2451 0.2622 0.2712 

Previous -7.9461 0.0290 0.1741 0.2131 0.2366 0.2491 0.2626 0.2675 

5 
Present -8.0490 0.0498 0.1747 0.2099 0.2334 0.2467 0.2622 0.2711 

Previous -7.9513 0.0525 0.1834 0.2185 0.2397 0.2510 0.2676 0.2674 

 

0 

Present -8.0913 0.2402 0.2429 0.2461 0.2504 0.2537 0.2547 0.2628 

Previous -8.0000 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 

-1 
Present -8.2465 0.6551 0.3477 0.2727 0.2333 0.2131 0.1834 0.1881 

Previous -8.1878 0.6882 0.3603 0.2773 0.2320 0.2075 0.1744 0.1745 

-1.5 
Present -8.8460 0.9009 0.3205 0.1914 0.1336 0.1020 0.0654 0.0666 

Previous -8.8348 0.9040 0.3203 0.1898 0.1314 0.0988 0.0622 0.0626 

-2.0 
Present -10.0947 0.9562 0.2503 0.1175 0.0723 0.0457 0.0221 0.0233 

Previous -10.0926 0.9565 0.2502 0.1170 0.0720 0.0451 0.0217 0.0229 

-2.5 
Present -11.6540 0.9749 0.2015 0.0775 0.0446 0.0238 0.0093 0.0106 

Previous -11.6533 0.9750 0.2015 0.0773 0.0445 0.0237 0.0092 0.0105 

-5 
Present -20.877 0.9946 0.1004 0.0199 0.0103 0.0030 0.0006 0.0011 

Previous -20.8077 0.9947 0.1004 0.0199 0.0103 0.0030 0.0006 0.0011 

-10 
Present -40.4010 0.9987 0.0501 0.0050 0.0025 0.0004 0.0000 0.0001 

Previous -40.4010 0.9987 0.0501 0.0050 0.0025 0.0004 0.0000 0.0001 

-15 
Present -60.2670 0.9994 0.0334 0.0022 0.0011 0.0001 0.0000 0.0000 

Previous -60.2670 0.9994 0.0334 0.0022 0.0011 0.0001 0.0000 0.0000 
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Table 3.2.  shows the calculated values of the Total Energies 
lE and the Variational Parameters lX possess by the 

Interacting Electrons as a function of some arbitrary values of the Interaction Strength u . for values of   

 147 l
l

X
 
  

 

tu 4/

 

Total 

Energy 

lE  

Variational  Parameters 

lX  ( l 7, 8, 9, 10, 11, 12, 13, 14) 

7X  8X  9X  10X  
11X  12X  13X  

14X  

50 
-8.0399 0.2832 0.2822 0.2855 0.2960 0.3113 0.2970 0.2903 0.2888 

-7.9411 0.2730 0.2839 0.2941 0.2821 0.2854 0.2927 0.3001 0.3045 

40 
-8.0402 0.2831 0.2821 0.2854 0.2958 0.3112 0.2968 0.2901 0.2886 

-7.9414 0.2729 0.2838 0.2940 0.2821 0.2853 0.2925 0.2999 0.3043 

30 -8.0407 0.2831 0.2820 0.2851 0.2957 0.3110 0.2966 0.2898 0.2883 

 -7.9420 0.2729 0.2837 0.2937 0.2819 0.2851 0.2932 0.2996 0.3040 

20 
-8.0417 0.2830 0.2817 0.2848 0.2955 0.3107 0.2962 0.2893 0.2877 

-7.9431 0.2728 0.2834 0.2933 0.2817 0.2848 0.2918 0.2989 0.3033 

10 
-8.0444 0.2828 0.2810 0.2835 0.2947 0.3098 0.2950 0.2879 0.2861 

-7.9461 0.2726 0.2825 0.2918 0.2809 0.2839 0.2905 0.2972 0.3012 

5 
-8.0490 0.2822 0.2796 0.2813 0.2933 0.3080 0.2928 0.2851 0.2830 

-7.9513 0.2720 0.2809 0.2892 0.2795 0.2821 0.2880 0.2940 0.2976 

 

0 

-8.0913 0.2697 0.2603 0.2556 0.2736 0.2852 0.2668 0.2555 0.2509 

-8.0000 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 0.2582 

-1 
-8.2465 0.1847 0.1641 0.1485 0.1731 0.1762 0.1564 0.1412 0.1336 

-8.1878 0.1656 0.1495 0.1351 0.1512 0.1466 0.1368 0.1271 0.1214 

-1.5 
-8.8460 0.0585 0.0423 0.0301 0.0438 0.0418 0.0320 0.0241 0.0199 

-8.8348 0.0532 0.0385 0.0270 0.0388 0.0350 0.0277 0.0211 0.0175 

-2.0 
-10.0947 0.0177 0.0100 0.0052 0.0100 0.0086 0.0054 0.0031 0.0021 

-10.0926 0.0169 0.0096 0.0050 0.0095 0.0078 0.0050 0.0030 0.0019 

-2.5 
-11.6540 0.0070 0.0032 0.0013 0.0032 0.0025 0.0013 0.0006 0.0003 

-11.6533 0.0068 0.0032 0.0013 0.0031 0.0023 0.0013 0.0006 0.0003 

-5 
-20.8077 0.0004 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 

-20.8077 0.0004 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 

-10 
-40.4010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

-40.4010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

-15 
-60.2670 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

-60.2670 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

*The previous study was carried out by [13]. 
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Table 3.3. Shows the values of the Correlation Time
l

 for only the Diagonal Separations: as a function of the 

Interaction Strength u for different values of the corresponding Total Energy
l

E . 

Diagonal 

lattice 

separation 

l  

Diagonal 

lattice 

separation
 

)(
l

y 
 

(degree) 

Correlation time 
l


 

 (seconds)  

u  50 20 0
 

-1
 

-2
 

-2.5
 

l
E  -8.0399 -8.0417 -8.0913 -8.2465 

-

10.0947 

-

11.6540 

l  
x10

-45

 
x10

-45

 
x10

-45

 
x10

-45

 
x10

-45

 
x10

-45

 

2 2 (45
0
) 2  1.41 1.42 1.72 1.87 0.66 0.38 

*4 

1

4 (63.43
0
) 

1

4  3.82 3.83 3.96 3.26 0.57 0.26 

2

4 (26.56
0
) 

2

4  1.60 1.60 1.66 1.37 0.25 0.11 

5 5 (45
0
) 5  3.69 3.69 3.56 2.52 0.25 0.09 

7 7 (71.56
0
) 7  7.09 7.09 6.71 4.51 0.36 0.12 

8 8 (56.31
0
) 8  6.34 6.33 5.81 3.60 0.18 0.05 

9 9 (45
0
) 9  6.03 6.01 5.36 3.06 0.09 0.02 

11 
11

 (75.96
0
) 11  10.8 10.8 9.82 5.95 0.24 0.06 

12 12 (63.43
0
) 12  9.11 9.29 8.32 4.79 0.14 0.03 

13 13 (53.12
0
) 13  8.53 8.50 7.46 4.05 0.08 0.01 

14 14 (45
0
) 14  8.13 8.10 7.02 3.67 0.05 0.01 

 

 

Fig. 3.1: shows the graph of correlation time against the lattice separation length. The first upper line represents 

two value of the interaction strength u =50 and 20. While from the top line correspond to u = 0, -1, -2 and -2.5 

respectively.  (GNUPLOT Software used) 
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IV. DISCUSSION OF RESULTS. 

It is shown in Tables 3.1 and 3.2 that as the 

interaction strength between the two electrons is 

decreased the total energies possess by the 

electrons also decrease and this is consistent with 

the two models we employed in this study. However, 

our present model yielded lower results of the total 

energies which are quite preferable since the 

electrons would prefer to settle down in the region of 

minimum potential. The negative values of the total 

energies show that the interaction between the two 

electrons is attractive and not repulsive.  

The table also revealed that for higher positive 

interaction strength the variational parameters for 

larger separations are greater than those of the lower 

ones.  This is as a result of the fact that electrons 

prefer to stay far apart as possible so that the chance 

of finding them close to one another is reduced at 

high positive values of the interaction strength. 

Also from the table we found that for lower negative 

interaction strength the variational parameters for 

larger separations are smaller than those of the lower 

ones.  Thus when the interaction strength is 

increased more negatively the two electrons now 

prefer to stay very close to one another instead of 

remaining far apart from one another. Hence the 

chance of finding the electrons close to one another 

is increased at high negative values of the interaction 

strength. 

It is clear from the table that the results of the total 

energies for both models converge to the same value 

in the large negative interaction strength. The 

variational parameters also vanish or go to zero at a 

high negative value of the interaction strength and 

this is around 54/ tu . One remarkable feature of 

the single-band HM is its behaviour when the 

interaction strength is zero ( 0u ). In this case, the 

variational parameters produced by the single-band 

HM are the same. The interpretation of this is that in 

the absence of interaction strength (free electron 

system) the two electrons have equal probability of 

being found on any of the lattice separations.   

However, the variational parameters produced by the 

gradient Hamiltonian model are not the same. The 

interpretation of this is that even in the absence of 

interaction strength or potential function 04/ tu  

there is still an existing residual potential field 

between the two interacting electrons hence the 

unequal probability of being found on any of the 

lattice separations. The relationship between the 

electrons is now based on the statistical dependence 

of the electrons on the uniform lattice separation 

distance and the angular displacement as contained 

in the Hamiltonian model. The variations in the 

angular displacements could also be responsible for 

the fluctuation in the values of the variational 

parameters. 

It is shown in Table 3.3 that in the positive regime of 

the interaction strength tu 4/ , the correlation times
2



and 
4

  initially increases in value as the interaction 

strength is decreased before it starts to decrease 

consistently with respect to negative increase in the 

interaction strength, this is around the value of

14/ tu .  

Finally, the correlation times for the other diagonal 

lattice separations (
5

 ,
7

 … 
14

 )
 

consistently 

decreases for regimes of both positive and negative 

interaction strength. The study shows that the 

correlation time
11

 has the greatest value of 

correlation amplitude. This is due to the fact that the 

correlation time corresponds to the greatest 

separation angle. Thus the higher the separation 

gradient the higher the correlation time become. The 

values of the correlation times in the negative regime 

are much lower than those in the positive regime. 

Thus high negative interaction strength decreases 

the correlation time between electrons as they hop 

from one lattice site to another. The information 

supplied in Table 3.2 is however for clarity of purpose 

is reproduced in fig. 3.1. The interpretation is thus the 

same.    
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V. CONCLUSION. 

In this work, we utilized two types of Hamiltonian 

model to study the behaviour of two interacting 

electrons on a two dimensional (2D) 9 X 9 square 

lattice. The Hamiltonian is the single-band Hubbard 

model and the gradient Hamiltonian model. 

Obviously, the total energies of the two interacting 

electrons produced by the gradient Hamiltonian 

model are consistently lower than those of the 

original single-band Hubbard model. Thus the 

inclusion of the gradient parameters into the single-

band HM yielded better results of the ground-state 

energies. Hence the lower ground-state energies 

produced by our new model are quite compactable 

with quantum variational requirements. Generally, it 

is established in this work that electron correlation is 

highly favoured within the limits of high negative 

interaction strength. 

 

Appendix 

Table A. 1: Relevant information derived from the Basis Set of the Geometry of 2D 9 x 9 Square Lattice. 

Lattice separation l  

and actual  lattice 
separation 

distance 
l

d  

 

Total 
number of 

nearest 
neighbour 
sites at a 

separation 

length l  

Pair 
wave 

function 

l
  

Total 
number of 

Pair 
electronic 

states  

Number of 
different 

pair electronic 
states 

at lattice 

separation l  

)(
2

N
l
  

Representative 
2 D Pair 

electronic states 
for each 

separation l  


2211

, yxyx  

l  
Separation 

Distance
l

d  
l

  
l

  
ll

  

0 0  1 0  81  81811   
     

 11,11  

1 a  4  1  324 324814    12,11  

2 a2  4  2
 

324 324814    22,11  

3 a2  4  3  324 324814    13,11  

*4 a5  

 
8

 
 

4
 

648 
324814    23,11  

324814    32,11  

5 a8  4
 5

 
324 324814    33,11  

6 a3
 4  6          324 324814   

      
 14,11  

7 a10
 

8  7  648 648818   
      

 24,11  

8 a13
 

8  8  648 648818   
      

 34,11  

9 a18
 

4  9  324 324814   
      

 44,11  

10 a4  4  10  324 324814   
      

 15,11  

11 a17
 

8  11  648 648818   
      

 25,11  

12 a20
 

8  12  648 648818   
      

 35,11  

13 a25  8  13  648 648818   
     

 45,11  

14 a32
 

4  14
 

324 324814   
     

 55,11  

Total number of electronic states 

9N ;
 

2
)( NN  =6561 

6561 6561 6561
 

*Note that there are two basic diagonal separations length in 4l .  
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Table A. 2: Relevant Information derived from the Basis Set of the Geometry of 2D 9 x 9 Square lattice. 

Lattice Separation l  

and actual  lattice 
separation 

distance 
l

d  

 

Pair wave 
function 

l
   

mA
10

101
0 
  

NN 
number of 
sites at a 

separation 

length l  

Total 
number of 

Pair 
electronic 

states  

Angle between 
two diagonal 

lattice 
separation  

and their ratio 

Representative 
2 D Pair 

electronic states 
for each 

separation l  


2211

, yxyx  

l  
Separation 
Distance d  

Separation 
Distance )(m  

l
  

ll
  

l
tan  l

D  

0 
0  0  0  1 81  -- -- 

     
 11,11  

1 1  a  1
10

10


  4  324 -- --  12,11  

2 2  a2  
10

102


  4  324 1 0.0494  22,11  

3 3  a2  2
10

10


  4  324 -- --  13,11  

*4 4  a5  

 

5
10

10


  

 

8  
324 2 0.0494  23,11  

324 0.5 0.0494
 

 32,11  

5 5  a8  8
10

10


  4  324 1 0.0494  33,11  

6 6  a3
 3

10
10


  4          324 -- -- 

     
 14,11  

7 7  a10
 

10
10

10


  8  648 3 0.0988 
     

 24,11  

8 8  a13
 

13
10

10


  8  648 1.5 0.0988 
     

 34,11  

9 9  a18
 

18
10

10


  4  324 1 0.0494
      

 44,11  

10 10  a4  4
10

10


  4  324 -- -- 
     

 15,11  

11 11  a17
 

17
10

10


  8  648 4 0.0988 
     

 25,11  

12 12  a20
 

20
10

10


  8  648 2 0.0988 
     

 35,11  

13 13  a25  25
10

10


  8  648 1.33 0.0988
 

     
 45,11  

14 14
 

a32
 

32
10

10


  4  324 1 0.0494
      

 55,11  

Total number of electronic states 

9N ;
 

6561)(
2
 NN  

 
6561 

   

 

The ratio 
l

D  is found from the division of the pair electronic states in each separation by the total number of 

electronic states. For example, 0494.06561/3242 D . Note that NN is the nearest neighbour. 
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Table A.3: Relevant Information Derived from the Diagonal Basis Set of the Geometry of 2D 9 x 9 Lattice. 

Diagonal 

Lattice 

separation 
l  

Diagonal 

lattice 

Pair wave 

function 

 

Actual  
diagonal 

lattice 
separation 

distance 
l

d  

 

Actual 

separation 

distance 

l
d  x 10

-10 

(m) 

 

Diagonal 

Lattice 

)(
l

y 
 

(Degree) 

Diagonal 

Lattice 

)(
l

y 
 

(Radian) 

Diagonal pair 
electronic 
states for  

each 
separation 

 

 

2 2  a2  1.414 
2

 (45
0
) 0.7855 

 
 22,11  

*4 4
 

 

a5  
 

2.236 

1

4 (63.43
0
)
 

1.1072 
    

 23,11
 

2

4 (26.56
0
) 0.4636  32,11  

5 5  a8  
2.828 5

 (45
0
) 0.7855  33,11  

7 7  a10  
3.162 7

 (71.56
0
) 1.2492  24,11  

8 8  a13  
3.605 8

 (56.31
0
) 0.9829  34,11  

9 9  a18  
4.242 9

 (45
0
) 0.7855  44,11  

11 11  a17  4.123 11
 (75.96

0
) 1.3259  25,11  

12 12  a20  
4.472 12

 (63.43
0
) 1.1072  35,11  

13 13  a25  
5-000 13

 (53.12
0
) 0.9272  45,11  

14 14
 a32  

5.656 14
 (45

0
) 0.7855  55,11  
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